Unraveling the Molecular Mechanisms of XRCC1 Gene SNPs in Thyroid Cancer Pathogenesis

Authors

  • Saman Maqbool Department of Zoology, Women University Multan, Multan Pakistan Author
  • Umer Ali Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA Author
  • Muhammad Rizwan Department of Zoology, University of Okara, Okara Pakistan Author
  • Asif BILALOV Department of Zoology, University of Okara, Okara Pakistan Author
  • Umar Naveed Saqib Department of Zoology, Govt College University Faisalabad, Pakistan Author
  • Maria Hussain Department of Zoology, University of Okara, Okara Pakistan Author
  • Iqra Asif Nawaz Department of Zoology, University of Sargodha, Sargodha Pakistan, Department of Biological Sciences, Superior University Lahore, Pakistan Author

Keywords:

XRCCI, SNPs, DNA, Genotype, Thyroid Cancer

Abstract

 This study aims to find the association of polymorphism Arg194Trp (rs1799782) with thyroid cancer in Southern Punjab. For this purpose, 60 samples of cases and 60 samples of controls were collected from the Multan Institute of Nuclear Medicine and Radiotherapy (MINAR) along with associated data. Factors included in this study were gender, age, smoking status, alcohol consumption, family history of cancer, family history of thyroid cancer, diet, exposure to radiation in childhood, and diabetes. Clinicopathological characters included in the study were types of thyroid cancer and grade of tumor. In the case of women, the number of pregnancies, use of oral contraceptives, and menstruation history were included. DNA extraction was done by using the salt extraction method and for amplification of DNA tetra ARMS PCR was done. The frequency of three genotypes CC, TT, and CT of Arg194Trp (rs1799782) was found to be 49, 3, and 8 in patients while it was 43, 7, and 10 in controls respectively. The allelic frequency of C and T was 0.8 and 0.2 in controls respectively. While in patients’ allelic frequency of C and T was 0.9 and 0.1 respectively. For statistical analysis, SPSS version 20 was used. After statistical analysis, Arg194Trp polymorphism was not found to be associated with thyroid cancer. However, the association of this cancer was found with gender, family history of cancer, diet, oral contraceptives, and menstruation history. 

Downloads

Download data is not yet available.

References

Ai, L., Yu, Y., Liu, X., Wang, C., Shi, J., Sun, H., and Yu, Q., 2014. Are the SNPs of NKX2-1

associated with papillary thyroid carcinoma in the Han population of Northern China?

Front. Med. China, 8(1): 113–117.

Afzal, M., Ali, U., Riaz, A., Tanvir, F., Bilal, A., & Ahmad, S. (2024). In-silico analysis of

deleterious single nucleotide polymorphisms (SNPs) of leukemia inhibitory factor (LIF),

and their conformational predictions. Journal of Population Therapeutics and Clinical

Pharmacology, 31(1), 2792-2811.

Arizono, K., Osada, Y., and Kuroda, Y., 2008. DNA repair gene hOGG1 Codon 326 and

XRCC1 Codon 399 polymorphisms and bladder cancer risk in a Japanese population.

Jpn. J. Clin. Oncol., 38(3): 186–191.

Aschebrook-Kilfoy, B., Sabra, M. M., Brenner, A., Moore, S. C., Ron, E., Schatzkin, A.,

Hollenbeck, A., and Ward, M. H., 2011. Diabetes and thyroid cancer risk in the national

institutes of Health-AARP diet and health study. Thyroid, 21(9): 957–963.

Asif, F., Ahmad, M. R., and Majid, A., 2015. Risk factors for thyroid cancer in females using a

logit model in Lahore, Pakistan. Asian Pacific J. Cancer Prev., 16(15): 6243–6247.

Balhara, Y. S., and Deb, K., 2013. Impact of alcohol use on thyroid function. Indian J.

Endocrinol. Metab., 17(4): 580.

Bilal, A., Tanvir, F., Ahmad, S., Kanwal, N., Zulfiqar, H., & Ishaq, R. (2024). Pharmacokinetic

Properties of Bioactive Compounds of Aloe vera against Pregnancy-Associated Plasma

Protein A (PAPP-A) inducing Triple-Negative Breast Cancer. Kurdish Studies, 12(5),

-168.

Blot, W. J., Le Marchand, L., Boice, J. D., and Henderson, B. E., 1997. Thyroid cancer in the

Pacific. J. Natl. Cancer Inst.

Bilal, A., Tanvir, F., Ahmad, S., Shah, S. H. A., Ahmad, H. A., & Kanwal, N. (2024). Preclinical study of the bioactive compound Asiaticoside against the proteins inducing

human mammary carcinoma using molecular docking and ADME analysis. Remittances

Review, 9(2), 3543-3576.

Boquist, L., 1993. Occupational exposures and thyroid cancer: Results of a case-control study.

Eur. J. Cancer Prev., 2(4): 345–349.

Bosetti, C., Negri, E., Kolonel, L., Ron, E., Franceschi, S., Preston-Martin, S., McTiernan, A.,

Dal Maso, L., Mark, S. D., Mabuchi, K., Land, C., Jin, F., Wingren, G., Galanti, M. R.,

Hallquist, A., Glattre, E., Lund, E., Levi, F., Linos, D., and La Vecchia, C., 2002. A

pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other

vegetables (International). Cancer Causes Control, 13(8): 765–775.

Brand, J. S., Chan, M. F., Dowsett, M., Folkerd, E., Wareham, N. J., Luben, R. N., Van Der

Schouw, Y. T., and Khaw, K. T., 2011. Cigarette smoking and endogenous sex hormones

in postmenopausal women. J. Clin. Endocrinol. Metab., 96(10): 3184–3192.

Brindel, P., and Bourgain, C., 2010. Family History of Thyroid Cancer and the Risk of

Differentiated Thyroid Cancer in French Polynesia, 20(4).

Carling, T., and Udelsman, R., 2014. Thyroid cancer. Annu. Rev. Med., 65: 125–137. Annual

Reviews.

Chen, A. Y., Jemal, A., and Ward, E. M., 2009. Increasing incidence of differentiated thyroid

cancer in the United States, 1988-2005. Cancer, 115(16): 3801–3807.

Cho, A., Chang, Y., Ahn, J., Shin, H., and Ryu, S., 2018. Cigarette smoking and thyroid cancer

risk : a cohort study. Br. J. Cancer, (January): 1–8. Springer US.

Cho, Y. A., and Kim, J., 2015. Dietary Factors Affecting Thyroid Cancer Risk: A MetaAnalysis. Nutr. Cancer, 67(5): 811–817.

Colonna, M., Guizard, A. V., Schvartz, C., Velten, M., Raverdy, N., Molinie, F., Delafosse, P.,

Frace, B., and Grosclaude, P., 2007. A time trend analysis of papillary and follicular

cancers as a function of tumour size: A study of data from six cancer registries in France

(1983-2000). Eur. J. Cancer, 43(5): 891–900.

Dal Maso, L., Bosetti, C., La Vecchia, C., and Franceschi, S., 2009. Risk factors for thyroid

cancer: An epidemiological review focused on nutritional factors. Cancer Causes

Control, 20(1): 75–86.

Davies, L., and Welch, H. G., 2006. Increasing incidence of thyroid cancer in the United States,

-2002. J. Am. Med. Assoc., 295(18): 2164–2167.

DeLellis, R. A., International Agency for Research on Cancer, World Health Organization, &

International Association for the Study of Lung Cancer, 2004. Pathology and genetics of

tumours of endocrine organs. World Heal. Organ. Classif. Tumours (p. 320).

El-Khamisy, S. F., Masutani, M., Suzuki, H., and Caldecott, K. W., 2003. A requirement for

PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA

damage. Nucleic Acids Res., 31(19): 5526–5533.

Feng, Y. Z., Liu, Y. L., He, X. F., Wei, W., Shen, X. L., and Xie, D. L., 2014. Association

between the XRCC1 Arg194Trp polymorphism and risk of cancer: evidence from 201

case–control studies. Tumor Biol., 35(11): 10677–10697.

Forat-Yazdi, M., Gholi-Nataj, M., Neamatzadeh, H., Nourbakhsh, P., and Shaker-Ardakani, H.,

Association of XRCC1 Arg399Gln polymorphism with colorectal cancer risk: a

HuGE meta analysis of 35 studies. Asian Pac J Cancer Prev, 16(8): 3285–3291.

Galanti, M. R., Hansson, L., Lund, E., Bergström, R., Grimelius, L., Stalsberg, H., Carlsen, E.,

Baron, J. A., Persson, I., and Ekbom, A., 1996. Reproductive history and cigarette

smoking as risk factors for thyroid cancer in women: A population-based case-control

study. Cancer Epidemiol. Biomarkers Prev., 5(6): 425–431.

García-Quispes, W. A., Pérez-Machado, G., Akdi, A., Pastor, S., Galofré, P., Biarnés, F., Castell,

J., Velázquez, A., and Marcos, R., 2011. Association studies of OGG1, XRCC1, XRCC2

and XRCC3 polymorphisms with differentiated thyroid cancer. Mutat. Res. - Fundam.

Mol. Mech. Mutagen., 709–710: 67–72.

Gilliland, F. D., Hunt, W. C., Morris, D. M., and Key, C. R., 1997. Prognostic factors for thyroid

carcinoma: A population-based study of 15,698 cases from the Surveillance,

Epidemiology and End Results (SEER) program 1973-1991. Cancer, 79(3): 564–573.

Halkova, T., Dvorakova, S., Sykorova, V., Vaclavikova, E., Vcelak, J., Vlcek, P., Sykorova, P.,

Kodetova, D., Betka, J., Lastuvka, P., Bavor, P., Hoch, J., Katra, R., and Bendlova, B.,

Polymorphisms in selected DNA repair genes and cell cycle regulating genes

involved in the risk of papillary thyroid carcinoma. Cancer Biomarkers, 17(1): 97–106.

Helms, C., 1990. Salting out Procedure for Human DNA extraction. Donis-Keller Lab-Lab Man.

Homepage.

Hemminki, K., and Vaittinen, P., 1997. - Effect of paternal and maternal cancer on cancer in the

offspring: a. Gut, 41(3): 417.

Huang, H., Zhao, N., Chen, Y., Deziel, N., Dai, M., and Li, N., 2018. Alcohol Consumption and

Risk of Thyroid Cancer : A Population Based Case-Control Study in Connecticut, 1–14.

Hundahl, S. A., Fleming, I. D., Fremgen, A. M., and Menck, H. R., 1998. A National Cancer

Data Base report on 53,856 cases of thyroid carcinoma treated in the US, 1985-1995.

Cancer Interdiscip. Int. J. Am. Cancer Soc., 83(12): 2638–2648. Wiley Online Library.

Hung, R. J., Hall, J., Brennan, P., and Boffetta, P., 2005. Genetic polymorphisms in the base

excision repair pathway and cancer risk: A huge review. Am. J. Epidemiol., 162(10):

–942.

Hursting, S. D., Lashinger, L. M., Wheatley, K. W., Rogers, C. J., Colbert, L. H., Nunez, N. P.,

and Perkins, S. N., 2008. Reducing the weight of cancer: mechanistic targets for breaking

the obesity-carcinogenesis link. Best Pract. Res. Clin. Endocrinol. Metab.

Iftikhar, A., Khush Naseeb, A., Khwaja, A., Mati, H., Karim, K., and Hameeda, N., 2011.

Patterns of differentiated thyroid cancer in Baluchistan Province of Pakistan: Some initial

observations. Med. J. Malaysia, 66(4): 322–325.

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D., 2011. Global Cancer

Statistics: 2011. CA Cancer J Clin, 61(2): 69–90.

Keefe, S. M., Cohen, M. A., and Brose, M. S., 2010. Targeting vascular endothelial growth

factor receptor in thyroid cancer: the intracellular and extracellular implications. Clin.

Cancer Res., 16(3): 778–783. AACR.

Kilfoy, B. A., Devesa, S. S., Ward, M. H., Zhang, Y., Rosenberg, P. S., Holford, T. R., and

Anderson, W. F., 2009a. Gender is an age-specific effect modifier for papillary cancers of

the thyroid gland. Cancer Epidemiol. Biomarkers Prev., 18(4): 1092–1100.

Kilfoy, B. A., Zheng, T., Holford, T. R., Han, X., Ward, M. H., Sjodin, A., Zhang, Y., Bai, Y.,

Zhu, C., Guo, G. L., and Rothman, N., 2009b. International patterns and trends in thyroid

cancer incidence, 1973-2002. Cancer Causes Control, 20(5): 525–531.

Kitahara, C. M., Preston, D. L., Neta, G., Little, M. P., Doody, M. M., Simon, S. L., Sigurdson,

A. J., Alexander, B. H., and Linet, M. S., 2018. Occupational radiation exposure and

thyroid cancer incidence in a cohort of U.S. radiologic technologists, 1983–2013. Int. J.

Cancer, 143(9): 2145–2149.

Mack, W. J., Preston-Martin, S., Dal Maso, L., Galanti, R., Xiang, M., Franceschi, S., Hallquist,

A., Jin, F., Kolonel, L., La Vecchia, C. and Levi, F., 2003. A pooled analysis of case--

control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee,

and tea. Cancer Causes Control, 14(8): 773–785. Springer.

Mannathazhathu, A. S., George, P. S., Sudhakaran, S., Vasudevan, D., Krishna KM, J., Booth,

C., and Mathew, A., 2019. Reproductive factors and thyroid cancer risk: Meta-analysis.

Head Neck, 41(12): 4199–4208.

Meinhold, C. L., Ron, E., Schonfeld, S. J., Alexander, B. H., Freedman, D. M., Linet, M. S., and

Berrington De González, A., 2010. Nonradiation risk factors for thyroid cancer in the US

radiologic technologists study. Am. J. Epidemiol., 171(2): 242–252.

Moore, D. J., Taylor, R. M., Clements, P., and Caldecott, K. W., 2000. Mutation of a BRCT

domain selectively disrupts DNA single-strand break repair in noncycling Chinese

hamster ovary cells. Proc. Natl. Acad. Sci., 97(25): 13649–13654. National Acad

Sciences.

Nedooshan, J. J., Yazdi, M. F., Neamatzadeh, H., Shehneh, M. Z., Kargar, S., and Seddighi, N.,

Genetic association of XRCC1 gene rs1799782, rs25487 and rs25489

polymorphisms with risk of thyroid cancer: A systematic review and meta-analysis. Asian

Pacific J. Cancer Prev., 18(1): 263–270.

Nikiforov, Y. E., and Nikiforova, M. N., 2011. Molecular genetics and diagnosis of thyroid

cancer. Nat. Rev. Endocrinol., 7(10): 569–580. Nature Publishing Group.

Norjmaa, B., Tulgaa, K., & Saitoh, T., 2016. Base Excision Repair Pathway and Polymorphisms

of XRCC1 Gene Base Excision Repair Pathway. iMedPub Journals, Vol.1 No.1: 1–5.

Ortega, J., Sala, C., Flor, B., & Lledo, S., 2004. Efficacy and Cost-Effectiveness of the

UltraCision® Harmonic Scalpel in Thyroid Surgery: An Analysis of 200 Cases in a

Randomized Trial. J. Laparoendosc. Adv. Surg. Tech., 14(1): 9–12.

Picchi, P., Faloci, C., and Salabé, G. B., 2001. Reproductive history, contraceptives and cigarette

smoke as risk factors for cancer of the thyroid in women. Case-control study. Minerva

Endocrinol., 26(2): 53–57.

Rossing, M. A., Cushing, K. L., Voigt, L. F., Wicklund, K. G., and Daling, J. R., 2000. Risk of

papillary thyroid cancer in women in relation to smoking and alcohol consumption.

Epidemiology, 11(1): 49–54.

Sakoda, L. C., and Horn-ross, P. L., 2002. Reproductive and Menstrual History and Papillary

Thyroid Cancer Risk : The San Francisco Bay Area Thyroid Cancer Study 1,

(January): 51–57.

Salimi, S., Mohammadoo-Khorasani, M., Tabatabai, E., Sandoughi, M., Zakeri, Z., & Naghavi,

A., 2014. XRCC1 Arg399Gln and Arg194Trp polymorphisms and risk of systemic lupus

erythematosus in an Iranian population: a pilot study. BioMed research

international, 2014.

Santos, L. S., Branco, S. C., Silva, S. N., Azevedo, A. P., Gil, O. M., Manita, I., Ferreira, T. C.,

Limbert, E., Rueff, J., and Gaspar, J. F., 2012. Polymorphisms in base excision repair

genes and thyroid cancer risk. Oncol. Rep., 28(5): 1859–1868.

Seibold, P., Schmezer, P., Behrens, S., Michailidou, K., Bolla, M. K., Wang, Q., Flesch-Janys,

D., Nevanlinna, H., Fagerholm, R., Aittomäki, K., Blomqvist, C., Margolin, S.,

Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Lambrechts, D., Wildiers,

H., Kristensen, V., Alnæs, G. G., Nord, S., Borresen-Dale, A. L., Hooning, M. J.,

Hollestelle, A., Jager, A., Seynaeve, C., Li, J., Liu, J., Humphreys, K., Dunning, A. M.,

Rhenius, V., Shah, M., Kabisch, M., Torres, D., Ulmer, H. U., Hamann, U., Schildkraut,

J. M., Purrington, K. S., Couch, F. J., Hall, P., Pharoah, P., Easton, D. F., Schmidt, M.

K., Chang-Claude, J., and Popanda, O., 2015. A polymorphism in the base excision repair

gene PARP2 is associated with differential prognosis by chemotherapy among

postmenopausal breast cancer patients. BMC Cancer, 15(1).

Shih, S. R., Chiu, W. Y., Chang, T. C., and Tseng, C. H., 2012. Diabetes and thyroid cancer risk:

Literature review. Exp. Diabetes Res.

Sigurdson, A. J., Land, C. E., Bhatti, P., Pineda, M., Brenner, A., Carr, Z., Gusev, B. I.,

Zhumadilov, Z., Simon, S.L., Bouville, A. and Rutter, J.L., Zhumadilov, Z., Simon, S.L.,

Bouville, A. and Rutter, J.L., 2009. Thyroid Nodules, Polymorphic Variants in DNA

Repair and RET -Related Genes, and Interaction with Ionizing Radiation Exposure from

Nuclear Tests in Kazakhstan . Radiat. Res., 171(1): 77–88.

Soldin, O. P., Goughenour, B. E., Gilbert, S. Z., Landy, H. J., and Soldin, S. J., 2009. Thyroid

hormone levels associated with active and passive cigarette smoking. Thyroid, 19(8):

–823.

Tuimala, J., Szekely, G., Wikman, H., Järventaus, H., Hirvonen, A., Gundy, S., and Norppa, H.,

Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes:Effects on levels of sister chromatid exchanges and chromosomal aberrations. Mutat. Res.

- Fundam. Mol. Mech. Mutagen., 554(1–2): 319–333.

La Vecchia, C., Ron, E., Franceschi, S., Dal Maso, L., Mark, S. D., Chatenoud, L., Braga, C.,

Preston-Martin, S., McTiernan, A., Kolonel, L., Mabuchi, K., Jin, F., Wingren, G.,

Galanti, M. R., Hallquist, A., Lund, E., Levi, F., Linos, D., and Negri, E.,1999. A pooled

analysis of case-control studies of thyroid cancer. III. Oral contraceptives, menopausal

replacement therapy and other female hormones. Cancer Causes Control, 10(2): 157–

Vlajinac, H. D., Adanja, B. J., Živaljević, V. R., Janković, R. R., Džodić, R. R., and Jovanović,

D. D., 1997. Malignant tumors in families of thyroid cancer patients. Acta Oncol.

(Madr)., 36(5): 477–481.

Vodicka, P., Stetina, R., Polakova, V., Tulupova, E., Naccarati, A., Vodickova, L., Kumar, R.,

Hanova, M., Pardini, B., Slyskova, J., Musak, L., De Palma, G., Soucek, P., and

Hemminki, K., 2007. Association of DNA repair polymorphisms with DNA repair

functional outcomes in healthy human subjects. Carcinogenesis, 28(3): 657–664.

Wang, C., and Ai, Z., 2014. Association of XRCC1 polymorphisms with thyroid cancer risk.

Tumor Biol., 35(5): 4791–4797.

Wang, Y., Spitz, M. R., Zhu, Y., Dong, Q., Shete, S., and Wu, X., 2003. From genotype to

phenotype: Correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair

(Amst)., 2(8): 901–908.

Wang, Y., Yang, H., Li, H., Li, L., Wang, H., Liu, C., and Zheng, Y., 2009. Association between

X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung

cancer risk: a meta-analysis. Cancer Lett., 285(2): 134–140. Elsevier.

Williams, E. D., Doniach, I., Bjarnason, O., and Michie, W., 1977. Thyroid cancer in an iodide

rich area. A histopathological study. Cancer, 39(1): 215–222.

Zamora-Ros, R., Béraud, V., Franceschi, S., Cayssials, V., Tsilidis, K. K., Boutron-Ruault, M.

C., Weiderpass, E., Overvad, K., Tjønneland, A., Eriksen, A. K., Bonnet, F., Affret, A.,

Katzke, V., Kühn, T., Boeing, H., Trichopoulou, A., Valanou, E., Karakatsani, A.,

Masala, G., Grioni, S., Santucci D. M. M., Tumino, R., Ricceri, F., Skeie, G., Parr, C. L.,

Merino, S., Salamanca-Fernández, E., Chirlaque, M. D., Ardanaz, E., Amiano, P.,

Almquist, M., Drake, I., Hennings, J., Sandström, M., Bueno-de-Mesquita, H. B., Peeters,

P. H.,Khaw, K.T., Wareham, N. J., Schmidt, J. A., Perez-Cornago, A., Aune, D., Riboli,

E., Slimani, N., Scalbert, A., Romieu, I., Agudo, A., and Rinaldi, S., 2018. Consumption

of fruits, vegetables and fruit juices and differentiated thyroid carcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Int. J.

Cancer, 142(3): 449–459.

Noor, A., Bilal, A., & Ali, U. (2024). Towards Personalized Cancer Care: A Report of CRISPRCas9 Applications in Targeted Therapies and Precision Medicine. Journal of Health and

Rehabilitation Research, 4(2), 1375-1380.

Bilal, A., Tanvir, F., Ahmad, S., Mustafa, R., Fatima, G., & Shahin, F. (2024). In-silico drug

discovery from phytoactive compounds against estrogen receptor beta (ERβ) inducing

human mammary carcinoma. Research, 7: 1-17.

Zhu, J., Qi, P., and Li, Z., 2018. Interaction between XRCC1 Gene Polymorphisms and Obesity

on Susceptibility to Papillary Thyroid Cancer in Chinese Han Population. Cell. Physiol.

Biochem., 49(2): 638–644.

Jawad, M., Bilal, A., Khan, S., Rizwan, M., & Arshad, M. (2023). Prevalence and awareness

survey of tuberculosis in the suspected population of Bajaur Agency in Fata, Pakistan:

Prevalence and awareness survey of tuberculosis. Pakistan Journal of Health Sciences,

-61.

Zhu, Q. X., Bian, J. C., Shen, Q., Jiang, F., Tang, H. W., Zhang, H. W., and Wu, Y., 2004.

Genetic polymorphisms in X-ray repair cross-complementing gene 1 and susceptibility to

papillary thyroid carcinoma. Zhonghua Liu Xing Bing Xue Za Zhi, 25(8): 702–705.

Zhu, Z., Ciampi, R., Nikiforova, M. N., Gandhi, M., and Nikiforov, Y. E., 2006. Prevalence of

RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection

methods and genetic heterogeneity. J. Clin. Endocrinol. Metab., 91(9): 3603–3610.

Oxford University Press.

Zivaljevic, V., Vlajinac, H., Marinkovic, J., Paunovic, I., Diklic, A., and Dzodic, R., 2004.

Cigarette smoking as a risk factor for cancer of the thyroid in women. Tumori, 90(3):

–275.

Zuberi, L. M., Yawar, A., Islam, N., and Jabbar, A., 2004. Clinical presentation of thyroid cancer

patients in Pakistan-AKUH experience. Journal-Pakistan Med. Assoc., 54(10): 526–527.

Downloads

Published

2024-04-30

How to Cite

Maqbool, S., Ali, U., Rizwan, M., BILALOV, A., Naveed Saqib, U., Hussain, M., & Asif Nawaz, I. (2024). Unraveling the Molecular Mechanisms of XRCC1 Gene SNPs in Thyroid Cancer Pathogenesis. History of Medicine, 10(2), 592-623. https://historymedjournal.com/HOM/index.php/medicine/article/view/818