Unraveling the Molecular Mechanisms of XRCC1 Gene SNPs in Thyroid Cancer Pathogenesis
Keywords:
XRCCI, SNPs, DNA, Genotype, Thyroid CancerAbstract
This study aims to find the association of polymorphism Arg194Trp (rs1799782) with thyroid cancer in Southern Punjab. For this purpose, 60 samples of cases and 60 samples of controls were collected from the Multan Institute of Nuclear Medicine and Radiotherapy (MINAR) along with associated data. Factors included in this study were gender, age, smoking status, alcohol consumption, family history of cancer, family history of thyroid cancer, diet, exposure to radiation in childhood, and diabetes. Clinicopathological characters included in the study were types of thyroid cancer and grade of tumor. In the case of women, the number of pregnancies, use of oral contraceptives, and menstruation history were included. DNA extraction was done by using the salt extraction method and for amplification of DNA tetra ARMS PCR was done. The frequency of three genotypes CC, TT, and CT of Arg194Trp (rs1799782) was found to be 49, 3, and 8 in patients while it was 43, 7, and 10 in controls respectively. The allelic frequency of C and T was 0.8 and 0.2 in controls respectively. While in patients’ allelic frequency of C and T was 0.9 and 0.1 respectively. For statistical analysis, SPSS version 20 was used. After statistical analysis, Arg194Trp polymorphism was not found to be associated with thyroid cancer. However, the association of this cancer was found with gender, family history of cancer, diet, oral contraceptives, and menstruation history.
Downloads
References
Ai, L., Yu, Y., Liu, X., Wang, C., Shi, J., Sun, H., and Yu, Q., 2014. Are the SNPs of NKX2-1
associated with papillary thyroid carcinoma in the Han population of Northern China?
Front. Med. China, 8(1): 113–117.
Afzal, M., Ali, U., Riaz, A., Tanvir, F., Bilal, A., & Ahmad, S. (2024). In-silico analysis of
deleterious single nucleotide polymorphisms (SNPs) of leukemia inhibitory factor (LIF),
and their conformational predictions. Journal of Population Therapeutics and Clinical
Pharmacology, 31(1), 2792-2811.
Arizono, K., Osada, Y., and Kuroda, Y., 2008. DNA repair gene hOGG1 Codon 326 and
XRCC1 Codon 399 polymorphisms and bladder cancer risk in a Japanese population.
Jpn. J. Clin. Oncol., 38(3): 186–191.
Aschebrook-Kilfoy, B., Sabra, M. M., Brenner, A., Moore, S. C., Ron, E., Schatzkin, A.,
Hollenbeck, A., and Ward, M. H., 2011. Diabetes and thyroid cancer risk in the national
institutes of Health-AARP diet and health study. Thyroid, 21(9): 957–963.
Asif, F., Ahmad, M. R., and Majid, A., 2015. Risk factors for thyroid cancer in females using a
logit model in Lahore, Pakistan. Asian Pacific J. Cancer Prev., 16(15): 6243–6247.
Balhara, Y. S., and Deb, K., 2013. Impact of alcohol use on thyroid function. Indian J.
Endocrinol. Metab., 17(4): 580.
Bilal, A., Tanvir, F., Ahmad, S., Kanwal, N., Zulfiqar, H., & Ishaq, R. (2024). Pharmacokinetic
Properties of Bioactive Compounds of Aloe vera against Pregnancy-Associated Plasma
Protein A (PAPP-A) inducing Triple-Negative Breast Cancer. Kurdish Studies, 12(5),
-168.
Blot, W. J., Le Marchand, L., Boice, J. D., and Henderson, B. E., 1997. Thyroid cancer in the
Pacific. J. Natl. Cancer Inst.
Bilal, A., Tanvir, F., Ahmad, S., Shah, S. H. A., Ahmad, H. A., & Kanwal, N. (2024). Preclinical study of the bioactive compound Asiaticoside against the proteins inducing
human mammary carcinoma using molecular docking and ADME analysis. Remittances
Review, 9(2), 3543-3576.
Boquist, L., 1993. Occupational exposures and thyroid cancer: Results of a case-control study.
Eur. J. Cancer Prev., 2(4): 345–349.
Bosetti, C., Negri, E., Kolonel, L., Ron, E., Franceschi, S., Preston-Martin, S., McTiernan, A.,
Dal Maso, L., Mark, S. D., Mabuchi, K., Land, C., Jin, F., Wingren, G., Galanti, M. R.,
Hallquist, A., Glattre, E., Lund, E., Levi, F., Linos, D., and La Vecchia, C., 2002. A
pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other
vegetables (International). Cancer Causes Control, 13(8): 765–775.
Brand, J. S., Chan, M. F., Dowsett, M., Folkerd, E., Wareham, N. J., Luben, R. N., Van Der
Schouw, Y. T., and Khaw, K. T., 2011. Cigarette smoking and endogenous sex hormones
in postmenopausal women. J. Clin. Endocrinol. Metab., 96(10): 3184–3192.
Brindel, P., and Bourgain, C., 2010. Family History of Thyroid Cancer and the Risk of
Differentiated Thyroid Cancer in French Polynesia, 20(4).
Carling, T., and Udelsman, R., 2014. Thyroid cancer. Annu. Rev. Med., 65: 125–137. Annual
Reviews.
Chen, A. Y., Jemal, A., and Ward, E. M., 2009. Increasing incidence of differentiated thyroid
cancer in the United States, 1988-2005. Cancer, 115(16): 3801–3807.
Cho, A., Chang, Y., Ahn, J., Shin, H., and Ryu, S., 2018. Cigarette smoking and thyroid cancer
risk : a cohort study. Br. J. Cancer, (January): 1–8. Springer US.
Cho, Y. A., and Kim, J., 2015. Dietary Factors Affecting Thyroid Cancer Risk: A MetaAnalysis. Nutr. Cancer, 67(5): 811–817.
Colonna, M., Guizard, A. V., Schvartz, C., Velten, M., Raverdy, N., Molinie, F., Delafosse, P.,
Frace, B., and Grosclaude, P., 2007. A time trend analysis of papillary and follicular
cancers as a function of tumour size: A study of data from six cancer registries in France
(1983-2000). Eur. J. Cancer, 43(5): 891–900.
Dal Maso, L., Bosetti, C., La Vecchia, C., and Franceschi, S., 2009. Risk factors for thyroid
cancer: An epidemiological review focused on nutritional factors. Cancer Causes
Control, 20(1): 75–86.
Davies, L., and Welch, H. G., 2006. Increasing incidence of thyroid cancer in the United States,
-2002. J. Am. Med. Assoc., 295(18): 2164–2167.
DeLellis, R. A., International Agency for Research on Cancer, World Health Organization, &
International Association for the Study of Lung Cancer, 2004. Pathology and genetics of
tumours of endocrine organs. World Heal. Organ. Classif. Tumours (p. 320).
El-Khamisy, S. F., Masutani, M., Suzuki, H., and Caldecott, K. W., 2003. A requirement for
PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA
damage. Nucleic Acids Res., 31(19): 5526–5533.
Feng, Y. Z., Liu, Y. L., He, X. F., Wei, W., Shen, X. L., and Xie, D. L., 2014. Association
between the XRCC1 Arg194Trp polymorphism and risk of cancer: evidence from 201
case–control studies. Tumor Biol., 35(11): 10677–10697.
Forat-Yazdi, M., Gholi-Nataj, M., Neamatzadeh, H., Nourbakhsh, P., and Shaker-Ardakani, H.,
Association of XRCC1 Arg399Gln polymorphism with colorectal cancer risk: a
HuGE meta analysis of 35 studies. Asian Pac J Cancer Prev, 16(8): 3285–3291.
Galanti, M. R., Hansson, L., Lund, E., Bergström, R., Grimelius, L., Stalsberg, H., Carlsen, E.,
Baron, J. A., Persson, I., and Ekbom, A., 1996. Reproductive history and cigarette
smoking as risk factors for thyroid cancer in women: A population-based case-control
study. Cancer Epidemiol. Biomarkers Prev., 5(6): 425–431.
García-Quispes, W. A., Pérez-Machado, G., Akdi, A., Pastor, S., Galofré, P., Biarnés, F., Castell,
J., Velázquez, A., and Marcos, R., 2011. Association studies of OGG1, XRCC1, XRCC2
and XRCC3 polymorphisms with differentiated thyroid cancer. Mutat. Res. - Fundam.
Mol. Mech. Mutagen., 709–710: 67–72.
Gilliland, F. D., Hunt, W. C., Morris, D. M., and Key, C. R., 1997. Prognostic factors for thyroid
carcinoma: A population-based study of 15,698 cases from the Surveillance,
Epidemiology and End Results (SEER) program 1973-1991. Cancer, 79(3): 564–573.
Halkova, T., Dvorakova, S., Sykorova, V., Vaclavikova, E., Vcelak, J., Vlcek, P., Sykorova, P.,
Kodetova, D., Betka, J., Lastuvka, P., Bavor, P., Hoch, J., Katra, R., and Bendlova, B.,
Polymorphisms in selected DNA repair genes and cell cycle regulating genes
involved in the risk of papillary thyroid carcinoma. Cancer Biomarkers, 17(1): 97–106.
Helms, C., 1990. Salting out Procedure for Human DNA extraction. Donis-Keller Lab-Lab Man.
Homepage.
Hemminki, K., and Vaittinen, P., 1997. - Effect of paternal and maternal cancer on cancer in the
offspring: a. Gut, 41(3): 417.
Huang, H., Zhao, N., Chen, Y., Deziel, N., Dai, M., and Li, N., 2018. Alcohol Consumption and
Risk of Thyroid Cancer : A Population Based Case-Control Study in Connecticut, 1–14.
Hundahl, S. A., Fleming, I. D., Fremgen, A. M., and Menck, H. R., 1998. A National Cancer
Data Base report on 53,856 cases of thyroid carcinoma treated in the US, 1985-1995.
Cancer Interdiscip. Int. J. Am. Cancer Soc., 83(12): 2638–2648. Wiley Online Library.
Hung, R. J., Hall, J., Brennan, P., and Boffetta, P., 2005. Genetic polymorphisms in the base
excision repair pathway and cancer risk: A huge review. Am. J. Epidemiol., 162(10):
–942.
Hursting, S. D., Lashinger, L. M., Wheatley, K. W., Rogers, C. J., Colbert, L. H., Nunez, N. P.,
and Perkins, S. N., 2008. Reducing the weight of cancer: mechanistic targets for breaking
the obesity-carcinogenesis link. Best Pract. Res. Clin. Endocrinol. Metab.
Iftikhar, A., Khush Naseeb, A., Khwaja, A., Mati, H., Karim, K., and Hameeda, N., 2011.
Patterns of differentiated thyroid cancer in Baluchistan Province of Pakistan: Some initial
observations. Med. J. Malaysia, 66(4): 322–325.
Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D., 2011. Global Cancer
Statistics: 2011. CA Cancer J Clin, 61(2): 69–90.
Keefe, S. M., Cohen, M. A., and Brose, M. S., 2010. Targeting vascular endothelial growth
factor receptor in thyroid cancer: the intracellular and extracellular implications. Clin.
Cancer Res., 16(3): 778–783. AACR.
Kilfoy, B. A., Devesa, S. S., Ward, M. H., Zhang, Y., Rosenberg, P. S., Holford, T. R., and
Anderson, W. F., 2009a. Gender is an age-specific effect modifier for papillary cancers of
the thyroid gland. Cancer Epidemiol. Biomarkers Prev., 18(4): 1092–1100.
Kilfoy, B. A., Zheng, T., Holford, T. R., Han, X., Ward, M. H., Sjodin, A., Zhang, Y., Bai, Y.,
Zhu, C., Guo, G. L., and Rothman, N., 2009b. International patterns and trends in thyroid
cancer incidence, 1973-2002. Cancer Causes Control, 20(5): 525–531.
Kitahara, C. M., Preston, D. L., Neta, G., Little, M. P., Doody, M. M., Simon, S. L., Sigurdson,
A. J., Alexander, B. H., and Linet, M. S., 2018. Occupational radiation exposure and
thyroid cancer incidence in a cohort of U.S. radiologic technologists, 1983–2013. Int. J.
Cancer, 143(9): 2145–2149.
Mack, W. J., Preston-Martin, S., Dal Maso, L., Galanti, R., Xiang, M., Franceschi, S., Hallquist,
A., Jin, F., Kolonel, L., La Vecchia, C. and Levi, F., 2003. A pooled analysis of case--
control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee,
and tea. Cancer Causes Control, 14(8): 773–785. Springer.
Mannathazhathu, A. S., George, P. S., Sudhakaran, S., Vasudevan, D., Krishna KM, J., Booth,
C., and Mathew, A., 2019. Reproductive factors and thyroid cancer risk: Meta-analysis.
Head Neck, 41(12): 4199–4208.
Meinhold, C. L., Ron, E., Schonfeld, S. J., Alexander, B. H., Freedman, D. M., Linet, M. S., and
Berrington De González, A., 2010. Nonradiation risk factors for thyroid cancer in the US
radiologic technologists study. Am. J. Epidemiol., 171(2): 242–252.
Moore, D. J., Taylor, R. M., Clements, P., and Caldecott, K. W., 2000. Mutation of a BRCT
domain selectively disrupts DNA single-strand break repair in noncycling Chinese
hamster ovary cells. Proc. Natl. Acad. Sci., 97(25): 13649–13654. National Acad
Sciences.
Nedooshan, J. J., Yazdi, M. F., Neamatzadeh, H., Shehneh, M. Z., Kargar, S., and Seddighi, N.,
Genetic association of XRCC1 gene rs1799782, rs25487 and rs25489
polymorphisms with risk of thyroid cancer: A systematic review and meta-analysis. Asian
Pacific J. Cancer Prev., 18(1): 263–270.
Nikiforov, Y. E., and Nikiforova, M. N., 2011. Molecular genetics and diagnosis of thyroid
cancer. Nat. Rev. Endocrinol., 7(10): 569–580. Nature Publishing Group.
Norjmaa, B., Tulgaa, K., & Saitoh, T., 2016. Base Excision Repair Pathway and Polymorphisms
of XRCC1 Gene Base Excision Repair Pathway. iMedPub Journals, Vol.1 No.1: 1–5.
Ortega, J., Sala, C., Flor, B., & Lledo, S., 2004. Efficacy and Cost-Effectiveness of the
UltraCision® Harmonic Scalpel in Thyroid Surgery: An Analysis of 200 Cases in a
Randomized Trial. J. Laparoendosc. Adv. Surg. Tech., 14(1): 9–12.
Picchi, P., Faloci, C., and Salabé, G. B., 2001. Reproductive history, contraceptives and cigarette
smoke as risk factors for cancer of the thyroid in women. Case-control study. Minerva
Endocrinol., 26(2): 53–57.
Rossing, M. A., Cushing, K. L., Voigt, L. F., Wicklund, K. G., and Daling, J. R., 2000. Risk of
papillary thyroid cancer in women in relation to smoking and alcohol consumption.
Epidemiology, 11(1): 49–54.
Sakoda, L. C., and Horn-ross, P. L., 2002. Reproductive and Menstrual History and Papillary
Thyroid Cancer Risk : The San Francisco Bay Area Thyroid Cancer Study 1,
(January): 51–57.
Salimi, S., Mohammadoo-Khorasani, M., Tabatabai, E., Sandoughi, M., Zakeri, Z., & Naghavi,
A., 2014. XRCC1 Arg399Gln and Arg194Trp polymorphisms and risk of systemic lupus
erythematosus in an Iranian population: a pilot study. BioMed research
international, 2014.
Santos, L. S., Branco, S. C., Silva, S. N., Azevedo, A. P., Gil, O. M., Manita, I., Ferreira, T. C.,
Limbert, E., Rueff, J., and Gaspar, J. F., 2012. Polymorphisms in base excision repair
genes and thyroid cancer risk. Oncol. Rep., 28(5): 1859–1868.
Seibold, P., Schmezer, P., Behrens, S., Michailidou, K., Bolla, M. K., Wang, Q., Flesch-Janys,
D., Nevanlinna, H., Fagerholm, R., Aittomäki, K., Blomqvist, C., Margolin, S.,
Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Lambrechts, D., Wildiers,
H., Kristensen, V., Alnæs, G. G., Nord, S., Borresen-Dale, A. L., Hooning, M. J.,
Hollestelle, A., Jager, A., Seynaeve, C., Li, J., Liu, J., Humphreys, K., Dunning, A. M.,
Rhenius, V., Shah, M., Kabisch, M., Torres, D., Ulmer, H. U., Hamann, U., Schildkraut,
J. M., Purrington, K. S., Couch, F. J., Hall, P., Pharoah, P., Easton, D. F., Schmidt, M.
K., Chang-Claude, J., and Popanda, O., 2015. A polymorphism in the base excision repair
gene PARP2 is associated with differential prognosis by chemotherapy among
postmenopausal breast cancer patients. BMC Cancer, 15(1).
Shih, S. R., Chiu, W. Y., Chang, T. C., and Tseng, C. H., 2012. Diabetes and thyroid cancer risk:
Literature review. Exp. Diabetes Res.
Sigurdson, A. J., Land, C. E., Bhatti, P., Pineda, M., Brenner, A., Carr, Z., Gusev, B. I.,
Zhumadilov, Z., Simon, S.L., Bouville, A. and Rutter, J.L., Zhumadilov, Z., Simon, S.L.,
Bouville, A. and Rutter, J.L., 2009. Thyroid Nodules, Polymorphic Variants in DNA
Repair and RET -Related Genes, and Interaction with Ionizing Radiation Exposure from
Nuclear Tests in Kazakhstan . Radiat. Res., 171(1): 77–88.
Soldin, O. P., Goughenour, B. E., Gilbert, S. Z., Landy, H. J., and Soldin, S. J., 2009. Thyroid
hormone levels associated with active and passive cigarette smoking. Thyroid, 19(8):
–823.
Tuimala, J., Szekely, G., Wikman, H., Järventaus, H., Hirvonen, A., Gundy, S., and Norppa, H.,
Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes:Effects on levels of sister chromatid exchanges and chromosomal aberrations. Mutat. Res.
- Fundam. Mol. Mech. Mutagen., 554(1–2): 319–333.
La Vecchia, C., Ron, E., Franceschi, S., Dal Maso, L., Mark, S. D., Chatenoud, L., Braga, C.,
Preston-Martin, S., McTiernan, A., Kolonel, L., Mabuchi, K., Jin, F., Wingren, G.,
Galanti, M. R., Hallquist, A., Lund, E., Levi, F., Linos, D., and Negri, E.,1999. A pooled
analysis of case-control studies of thyroid cancer. III. Oral contraceptives, menopausal
replacement therapy and other female hormones. Cancer Causes Control, 10(2): 157–
Vlajinac, H. D., Adanja, B. J., Živaljević, V. R., Janković, R. R., Džodić, R. R., and Jovanović,
D. D., 1997. Malignant tumors in families of thyroid cancer patients. Acta Oncol.
(Madr)., 36(5): 477–481.
Vodicka, P., Stetina, R., Polakova, V., Tulupova, E., Naccarati, A., Vodickova, L., Kumar, R.,
Hanova, M., Pardini, B., Slyskova, J., Musak, L., De Palma, G., Soucek, P., and
Hemminki, K., 2007. Association of DNA repair polymorphisms with DNA repair
functional outcomes in healthy human subjects. Carcinogenesis, 28(3): 657–664.
Wang, C., and Ai, Z., 2014. Association of XRCC1 polymorphisms with thyroid cancer risk.
Tumor Biol., 35(5): 4791–4797.
Wang, Y., Spitz, M. R., Zhu, Y., Dong, Q., Shete, S., and Wu, X., 2003. From genotype to
phenotype: Correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair
(Amst)., 2(8): 901–908.
Wang, Y., Yang, H., Li, H., Li, L., Wang, H., Liu, C., and Zheng, Y., 2009. Association between
X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung
cancer risk: a meta-analysis. Cancer Lett., 285(2): 134–140. Elsevier.
Williams, E. D., Doniach, I., Bjarnason, O., and Michie, W., 1977. Thyroid cancer in an iodide
rich area. A histopathological study. Cancer, 39(1): 215–222.
Zamora-Ros, R., Béraud, V., Franceschi, S., Cayssials, V., Tsilidis, K. K., Boutron-Ruault, M.
C., Weiderpass, E., Overvad, K., Tjønneland, A., Eriksen, A. K., Bonnet, F., Affret, A.,
Katzke, V., Kühn, T., Boeing, H., Trichopoulou, A., Valanou, E., Karakatsani, A.,
Masala, G., Grioni, S., Santucci D. M. M., Tumino, R., Ricceri, F., Skeie, G., Parr, C. L.,
Merino, S., Salamanca-Fernández, E., Chirlaque, M. D., Ardanaz, E., Amiano, P.,
Almquist, M., Drake, I., Hennings, J., Sandström, M., Bueno-de-Mesquita, H. B., Peeters,
P. H.,Khaw, K.T., Wareham, N. J., Schmidt, J. A., Perez-Cornago, A., Aune, D., Riboli,
E., Slimani, N., Scalbert, A., Romieu, I., Agudo, A., and Rinaldi, S., 2018. Consumption
of fruits, vegetables and fruit juices and differentiated thyroid carcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Int. J.
Cancer, 142(3): 449–459.
Noor, A., Bilal, A., & Ali, U. (2024). Towards Personalized Cancer Care: A Report of CRISPRCas9 Applications in Targeted Therapies and Precision Medicine. Journal of Health and
Rehabilitation Research, 4(2), 1375-1380.
Bilal, A., Tanvir, F., Ahmad, S., Mustafa, R., Fatima, G., & Shahin, F. (2024). In-silico drug
discovery from phytoactive compounds against estrogen receptor beta (ERβ) inducing
human mammary carcinoma. Research, 7: 1-17.
Zhu, J., Qi, P., and Li, Z., 2018. Interaction between XRCC1 Gene Polymorphisms and Obesity
on Susceptibility to Papillary Thyroid Cancer in Chinese Han Population. Cell. Physiol.
Biochem., 49(2): 638–644.
Jawad, M., Bilal, A., Khan, S., Rizwan, M., & Arshad, M. (2023). Prevalence and awareness
survey of tuberculosis in the suspected population of Bajaur Agency in Fata, Pakistan:
Prevalence and awareness survey of tuberculosis. Pakistan Journal of Health Sciences,
-61.
Zhu, Q. X., Bian, J. C., Shen, Q., Jiang, F., Tang, H. W., Zhang, H. W., and Wu, Y., 2004.
Genetic polymorphisms in X-ray repair cross-complementing gene 1 and susceptibility to
papillary thyroid carcinoma. Zhonghua Liu Xing Bing Xue Za Zhi, 25(8): 702–705.
Zhu, Z., Ciampi, R., Nikiforova, M. N., Gandhi, M., and Nikiforov, Y. E., 2006. Prevalence of
RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection
methods and genetic heterogeneity. J. Clin. Endocrinol. Metab., 91(9): 3603–3610.
Oxford University Press.
Zivaljevic, V., Vlajinac, H., Marinkovic, J., Paunovic, I., Diklic, A., and Dzodic, R., 2004.
Cigarette smoking as a risk factor for cancer of the thyroid in women. Tumori, 90(3):
–275.
Zuberi, L. M., Yawar, A., Islam, N., and Jabbar, A., 2004. Clinical presentation of thyroid cancer
patients in Pakistan-AKUH experience. Journal-Pakistan Med. Assoc., 54(10): 526–527.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.