Relation of Some Immunological Markers (IL 4, 12 and 23) with Toxoplasmosis in Aborted Women

Authors

  • Ali abdl Husseen jawad Al-Zahra Teaching Hospital, Wasit Health Directorate, Iraqi Ministry of Health, Wasit, Ira Author
  • Ahmed S. Abed Jabir Ibn Hayyan University of Medical and Pharmaceutical Sciences, Najaf, Iraq. Author
  • Zainab K. Ali Ministry of Science and Technology, Baghdad, Iraq. Author
  • Raed shakir shnain Alshaheed fayrooz hospital, Wasit Health Directorate, Iraqi Ministry of Health, Wasit, Iraq. Author
  • Raji Mohsen Al-Yasiri Dhi-Qar Health Directorate, Iraqi Ministry of Health, Nasiriya, Iraq. Author
  • Moamin Ibraheem Kate Dhi-Qar Health Directorate, Iraqi Ministry of Health, Nasiriya, Iraq Author
  • Mustafa Jawad Kadham Department of Forensic Sciences, College of Medical Techniques, Al-Farahidi university, Baghdad, iraq Author
  • Abdulrahman Abbas Jasim Dhi-Qar Health Directorate, Iraqi Ministry of Health, Nasiriya, Iraq Author
  • Jasim M. Almuttrek Dhi-Qar Health Directorate, Iraqi Ministry of Health, Nasiriya, Iraq. Author
  • Qais R. Lahhob Dhi-Qar Health Directorate, Iraqi Ministry of Health, Nasiriya, Iraq.College of Health and Medical Technology, Al-Ayen University, Dhi Qar, Iraq.College of Health and Medical Technology, Al-Ayen University, Dhi Qar, Iraq. Author

Keywords:

Toxoplasma gondii, Abortion, IL-4, IL12, IL 23.

Abstract

Toxoplasma gondii is a major cause of abortion in pregnant women. Toxoplasmosis infection in the mother during pregnancy is frequently associated with transplacental transmission of the parasite to the fetus. The purpose of this study Aims of this study determine and compared the different concentrations level of interleukin (IL) 4, 12 &23 in patients with toxoplasmosis and control groups.  From September 2020 to May 2021, a case-control study was carried out in Thi-Qar province to estimate the role of Toxoplasmosis in the occurrence of abortion among pregnant women. The current study included 120 aborted women as well as 20 healthy women as controls (Non pregnant and have no clinical history of abortion). All of these cases involved only females of reproductive age (16-44 years). Toxo-IgM and Toxo-IgG antibodies were tested first with a latex agglutination test (LAT) to detect positive samples, followed by an Enzyme Linked Immunesorbent Assay (ELISA) to detect IgG and IgM antibodies in both groups. CUSABIO method for measuring human interferon (IFN-) and 2-human cluster of differentiation 4 (CD4) (USA).  IL-12 value in a patient with IgM was (48.59) which is significantly higher than the control patient value (38.69). Also, IL12 value of patients with Toxo IgG (57.48) was significantly higher than the control patient. IL-23 values of a patient with Toxo- IgG, and Toxo- IgM were (77.92&57.92) respectively which is significantly higher than the control patient value (38.38). IL-4 value in a patient with Toxo- IgG was (35.83) and Toxo- IgM was (42.67) which is significantly higher than the control patient value (25.90). 

Downloads

Download data is not yet available.

References

Aghwan, S. S .; Al-Taee, A. F .; & Suliman, E. G. (2010).

Detection of Toxoplasma gondii infection in domestic

rabbits by using multiple techniques. Iraqi Journal of

Veterinary Sciences, 24(2): 65–69.

Alvarez, C. (2021). Immunity-related GTPases (IRGs) in the

house mouse and the parasite Toxoplasma gondii in

South America.

Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B.,

Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T.,

Zurawski, S., Wiekowski, M., Lira, S. A., Gorman, D.,

Kastelein, R. A., & Sedgwick, J. D. (2003). Interleukin-23

rather than interleukin-12 is the critical cytokine for

autoimmune inflammation of the brain. Nature,

(6924), 744–748.

https://doi.org/10.1038/nature01355

Dubey, J. P. (2020). The history and life cycle of

Toxoplasma gondii. In Toxoplasma gondii (Issue 1909,

pp. 1–19). Elsevier. https://doi.org/10.1016/B978-0-12-

-2.00001-3

El-Shazly, A. M., Azab, M. S., El-Beshbishi, S. N., El-Nahas,

H. A., AA, A. M., Mel-S, M., & Morsy, T. A. (2005). Some

molecular aspects in schistosomiasis mansoni and

toxoplasmosis. Journal of the Egyptian Society of

Parasitology, 35(3), 795–808.

Ham, D. W., Kim, S. G., Seo, S. H., Shin, J. H., Lee, S. H., &

Shin, E. H. (2020). Chronic Toxoplasma gondii Infection

Alleviates Experimental Autoimmune Encephalomyelitis

by the Immune Regulation Inducing Reduction in IL-

A/Th17 Via Upregulation of SOCS3.

Neurotherapeutics. https://doi.org/10.1007/s13311-020-

-9

Hussain, M. A., Stitt, V., Szabo, E. A., & Nelan, B. (2017).

Toxoplasma gondii in the food supply. Pathogens, 6(2).

https://doi.org/10.3390/pathogens6020021

Ismail, H. A. H. A., Kang, B.-H., Kim, J.-S., Lee, J.-H., Choi, I.-

W., Cha, G.-H., Yuk, J.-M., & Lee, Y.-H. (2017). IL-12 and

IL-23 Production in Toxoplasma gondii- or LPS-Treated

Jurkat T Cells via PI3K and MAPK Signaling Pathways.

The Korean Journal of Parasitology, 55(6), 613–622.

https://doi.org/10.3347/kjp.2017.55.6.613

Jeffers, V., Tampaki, Z., Kim, K., & Sullivan, W. J. (2018). A

latent ability to persist: differentiation in Toxoplasma

gondii. Cellular and Molecular Life Sciences, 75(13),

–2373.

Khan, I. A., Matsuura, T., & Kasper, L. H. (1994). Interleukin-

enhances murine survival against acute

toxoplasmosis. Infection and Immunity, 62(5), 1639–

https://doi.org/10.1128/iai.62.5.1639-1642.1994

Lieberman, L. A., Cardillo, F., Owyang, A. M., Rennick, D. M.,

Cua, D. J., Kastelein, R. A., & Hunter, C. A. (2004). IL-23

Provides a Limited Mechanism of Resistance to Acute

Toxoplasmosis in the Absence of IL-12. The Journal of

Immunology, 173(3), 1887–1893.

https://doi.org/10.4049/jimmunol.173.3.1887

Mammari, N., Halabi, M. A., Yaacoub, S., Chlala, H., Dardé,

M. L., & Courtioux, B. (2019). Toxoplasma gondii

Modulates the Host Cell Responses: An Overview of

Apoptosis Pathways. BioMed Research International,

https://doi.org/10.1155/2019/6152489

Mencacci, A., Cenci, E., Del Sero, G., d’Ostiani, C. F., Mosci,

P., Trinchieri, G., Adorini, L., & Romani, L. (1998). IL-10 is

required for development of protective Th1 responses in

IL-12-deficient mice upon Candida albicans infection.

The Journal of Immunology, 161(11), 6228–6237.

Mercer, H. L., Snyder, L. M., Doherty, C. M., Fox, B. A., Bzik,

D. J., & Denkers, E. Y. (2020). Toxoplasma gondii dense

granule protein GRA24 drives MyD88-independent p38

MAPK activation, IL-12 production and induction of

protective immunity. PLoS Pathogens, 16(5), 1–24.

https://doi.org/10.1371/journal.ppat.1008572

Nickdel, M. B., Lyons, R. E., Roberts, F., Brombacher, F.,

Hunter, C. A., Alexander, J., & Roberts, C. W. (2004).

Intestinal pathology during acute toxoplasmosis is IL-4

dependent and unrelated to parasite burden. Parasite

Immunology, 26(2), 75–82. https://doi.org/10.1111/j.0141-

2004.00686.x

Nyonda, M. (2021). Toxoplasma gondii sphingolipids and an

effector protein at the nexus of parasite development.

University of Geneva.

Pedras‐Vasconcelos, J. A., Brunet, L. R., & Pearce, E. J.

(2001). Profound effect of the absence of IL‐4 on T cell

responses during infection with Schistosoma mansoni.

Journal of Leukocyte Biology, 70(5), 737–744.

Quan, J.-H., Zhou, W., Cha, G.-H., Choi, I.-W., Shin, D.-W., &

Lee, Y.-H. (2013). Kinetics of IL-23 and IL-12 secretion in

response to Toxoplasma gondii antigens from THP-1

monocytic cells. The Korean Journal of Parasitology,

(1), 85.

Roberts, C. W., Ferguson, D. J. P., Jebbari, H., Satoskar, A.,

Bluethmann, H., & Alexander, J. (1996). Different roles

for interleukin-4 during the course of Toxoplasma gondii

infection. Infection and Immunity, 64(3), 897–904.

https://doi.org/10.1128/iai.64.3.897-904.1996

Scanga, C. A., Aliberti, J., Jankovic, D., Tilloy, F., Bennouna,

S., Denkers, E. Y., Medzhitov, R., & Sher, A. (2002).

Cutting edge: MyD88 is required for resistance to

Toxoplasma gondii infection and regulates parasiteinduced IL-12 production by dendritic cells. The Journal

of Immunology, 168(12), 5997–6001.

Schade, B., & Fischer, H. G. (2001). Toxoplasma gondii

induction of interleukin-12 is associated with acute

virulence in mice and depends on the host genotype.

Veterinary Parasitology, 100(1–2), 63–74.

https://doi.org/10.1016/S0304-4017(01)00484-8

Sibley, L. D. (2017). Genetic analysis of pathogenesis in

Toxoplasma gondii. The FASEB Journal, 31, 270–271.

Sparvoli, D., & Lebrun, M. (2021). Unraveling the Elusive

Rhoptry Exocytic Mechanism of Apicomplexa. Trends in

Parasitology.

TAli, A., SMahdi, D., & Awad, A. (2019). SEROPREVALENCE

OF TOXOPLASMA GONDII ANTIBODIES IN ABORTED

WOMEN USING ENZYME LINKED IMMUNESORBENT

ASSAY(ELISA) IN THI-QAR PROVINCE, IRAQ.

International Journal of Advanced Research, 7(1), 629–

https://doi.org/10.21474/IJAR01/8371

Villard, O., Candolfi, E., Despringre, J. L., Derouin, F.,

Marcellin, L., Viville, S., & Kien, T. (1995). Protective

effect of low doses of an anti‐IL‐4 monoclonal antibody

in a murine model of acute toxoplasmosis. Parasite

Immunology, 17(5), 233–236.

Yamamoto, M., Okuyama, M., Ma, J. S., Kimura, T., Kamiyama, N., Saiga, H., Ohshima, J., Sasai, M., Kayama, H., & Okamoto, T. (2012). A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity, 37(2), 302–313.

Zhang, Y., Lai, B. S., Juhas, M., & Zhang, Y. (2019). Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiological Research, 227, 126293.

Downloads

Published

2023-04-30

Issue

Section

Articles

How to Cite

abdl Husseen jawad, A., S. Abed, A., K. Ali, Z., shakir shnain, R., Mohsen Al-Yasiri, R., Ibraheem Kate, M., Jawad Kadham, M., Abbas Jasim, A., M. Almuttrek, J., & R. Lahhob, Q. (2023). Relation of Some Immunological Markers (IL 4, 12 and 23) with Toxoplasmosis in Aborted Women. History of Medicine, 9(2). https://historymedjournal.com/HOM/index.php/medicine/article/view/619