Modern Methods of Measuring Pesticides Using Biosensors

Authors

  • Arkan Al-Yasari ITMO University, Faculty of Biotechnology (BioTech), Lomonosov str. 9, 191002, St. Petersburg, Russia Author
  • Nadezhda Barakova ITM0 University, Faculty of Biotechnology (BioTech), Lomonosov str. 9, 191002, St. Petersburg, Russia Author
  • Victoria Matytcina ITMO University, Faculty of Biotechnology (BioTech), Lomonosov str. 9, 191002, St. Petersburg, Russia Author
  • Ksenia Rukhlyada ITM0 University, Faculty of Biotechnology (BioTech), Lomonosov str. 9, 191002, St. Petersburg, Russia Author
  • Alexander Dobrinov candidate of technical sciences, associate professor, senior researcher of the department of agro ecology in crop production, Institute of Agro engineering and Environmental Problems of Agricultural Production - branch of the Federal State Budgetary Institution FNAC VIM, SaintPetersburg, Russian Federation Author

Keywords:

Pesticides, Biosensors, Agricultural, Environment, Analyte, Organophosphate, Transducer

Abstract

Because of the large amounts of commonly used pesticides as well as their impacts upon health and the environment, there is a high importance in finding an accurate and prompt pesticide analysis methods. This paper provides an overview for modern methods and trends in the measurement of pesticide contamination based on biosensors. Moreover, there are different types and classifications of biosensors which play a successful role in environmental and agricultural pollutant analysis, and process control. Present study, conducted on view the more development bio-receptors depending sensors in additional to fluorescent biosensor for pesticides detection. This review showed that biosensors depend on biological component (such as an enzyme, a DNA probe, antibody) as recognition elements/bio-receptors are more accurate and reliable than traditional analytical instruments. In conclusion, The application of the bio-sensor-based instrument to pesticide detections in environment and different biological products like the vegetables and fruits are successful and will be researched more in the future. 

Downloads

Download data is not yet available.

References

World Health Organization. Human Biomonitoring: Facts

and Figures; WHO Regional Office for Europe:

Copenhagen, Denmark, 2015.

WHO (World Health Organization). Available online:

https://www.who.int/ (accessed on 30 December

.

United States Environmental Protection Agency (US EPA).

Available online: https://www.epa.gov/ (accessed on 30

December 2019).

Human Resources Council. United Nations General

Assembly. Report of the Special Rapporteur on the

Right to food. Available online:

https://www.ohchr.org/en/issues/food/pages/foodind

ex.aspx (accessed on 30 December 2019)

Grimalt, S.; Dehouck, P. Review of analytical methods for

the determination of pesticide residues in grapes. J.

Chromatogr. A 2016, 1433,1-23.

Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.

Determination of multi-pesticide residues in green tea

With a modi fi ed QuEChERS protocol coupled to

HPLC-MS/MS. Food Chern. 2019, 275: 255-264

Caso, E.L.; Plaguicidas, C.D.E.L.O.S. Andlisis de la directiva

europea 98/83/CE: Paradigma de la justificaciony

establecimiento de los valores parametricos. El caso

concreto de los plaguicidas. 2012, 86: 21-35.

Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J. A disposable

electrochemical immunosensor based on carbon

Screen-printed electrodes for the detection of prostate

specific antigen. Biosens. Bioelectron. 2012, 38: 355-361.

Chauhan, N.; Narang, J.; Jain, U. Amperometric

acetylcholinesterase biosensor for pesticides monitoring

Utilising iron oxide nanoparticles and poly(indole-5-

carboxylic acid). J. Exp. Nanosci. 2016, 11: 111-122.

Jaffrezic-Renault, N. New Trends in Biosensors for

Organophosphorus Pesticides. Sensors 2009, 1, 2, 2001:60-74.

Ronkainen, N.J.; H. B. Halsall, H.B. W. R. Heineman, W.R.

Electrochemical Biosensors. Chemical Society Reviews 2010, 39, 11:1747-1763.

Zhao, G.; Wang, H.; Liu. G. Advances in Biosensor-Based

Instruments for Pesticide Residues Rapid Detection.Int.

J. Electrochem. Sci. 2015,10.

Sun, X.; Liu, B.; Xia, K. A Sensitive and Regenerable

Biosensor for Organophosphate Pesticide Based on Self

Assembled Multilayer Film with CdTe as Fluorescence

Probe. Luminescence 2011, 26, 6: 616-621.

Oliveira, A.C.; and Mascaro, L.H. Evaluation of

Acetylcholinesterase Biosensor Based on Carbon

Nanotube Paste in the Determination of Chlorphe

nvinphos. International Journal of Analytical Chemistry

, Article ID 974216.

Sun, X.; and Wang, X. Acetylcholinesterase Biosensor Based

on Prussian Blue-Modified Electrode for Detecting

Organop hosphorous Pesticides. Biosensors and

Bioelectronics 2010, 25, 1-2:2611-2614.

Sassolas, A.; Prieto-Simon, B.; Marty, J. Biosensors for

Pesticide Detection: New Trends. American Journal of

Analytical Chemistry 2012, 3: 210-232.

Yu, G.; Wu, W.; Zhao, G.; Wei, X.; Lu, Q. Efficient

immobilization of acetylcholinesterase onto amino

functionalized carbon nanotubes for the fabrication of

high sensitive organophosphorus pesticides biosensors.

Biosens Bioelectron. 2015, 15, 68:288-294.

Jain, M.; Yadav, P.; Joshi, A.; Kodgire, P. Advances in

detection of hazardous organophosphorus compounds

using organophosphorus hydrolase based biosensors.

Crit Rev Toxicol. 2019, 49, 5:387-410.

Senbua, W.; Mearnchu, J.; Wichitwechkarn, J. Easy-to-use

and reliable absorbance-based MPH-GST biosensor for

the detection of methyl parathion pesticide. Biotechnol

Rep (Amst) 2020, 23,27:e00495.

Rapichai, W.; Chaichalerm, S.; Mearnchu, J.;

Wichitwechkarn, J. MPH-GST sensing microplate for

easy detection of organophosphate insecticides.

Biotechnol Lett. 2021, 43,4:933-944.

Lan, W.; Chen, G.; Cui, F.; Tan, F.; Liu, R.; Yushupujiang, M.

Development of a novel optical biosensor for detection

of organophosphorus pesticides based on methyl

parathion hydrolase immobilized by metal-chelate

affinity. Sensors (Basel), 2012,12,7:8477-90.

Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.;

Ahmad, B. Colorimetric Detection of Organophosphate

Pesticides Based on Acetylcholinesterase and

Cysteamine Capped Gold Nanoparticles as Nanozyme.

Sensors (Basel), 2021,21,23:8050.

Alonso, G.A.; Istamboulie, G.; Noguer, T.; Marty, J.-L.;

Munoz, R. Rapid determination of pesticide mixtures

using 'disposable biosensors based on genetically

modified enzymes and artificial neural networks.

Sensors and Actuators B, 2012,164, 1: 22-28.

Amine, A.; Mohammadi, H.; Bouais, I.; Palleschi, G. Enzyme

inhibition-based biosensors for food safety and

environmental monitoring. Biosens. Bioelectron, 2006,

, 1405-23.

Gamal A. E. Mostafa .Electrochemical Biosensors for the

Detection of Pesticides. The Open Electrochemistry

Journal, 2010, 2, 22-42.

Dan, D.; Jiawang, D.; Jie, C.; Jianming, Z.; Li, L. In situ

electrodeposited nanoparticles for facilitating electron

transfer across selfassembled monolayers in biosensor

design. Taianta, 2008, 74, 1337-43.

Kurbanoglu, S.; Ozkan, S.A.; Merkoq, A. Nanomaterialsbased enzyme electrochemical biosensors operating

Through inhibition for biosensing applications. Biosens.

Bioelectron. 2017, 89, 886-898.

Dou, J.; Fan, F.; Ding, A.; Cheng, L.; Sekar, R.; Wang, H.; Li,

S. A screen-printed, amperometric biosensor for the

determination of organophosphorus pesticides in water

samples. J. Environ. Sci. 2012, 24, 956-962.

Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly

sensitive amperometric sensing of nitrite utilizing bulkmodified MnO2 decorated Graphene oxide

nanocomposite screen-printed electrodes. Electrochim.

Acta 2017, 227, 255-266.

Thunkhamrak, C.; Chuntib, P.; Ounnunkad, K.; Banet, P.

Highly sensitive voltammetric immunosensor for the

detection of prostate specific antigen based on silver

nanoprobe assisted graphene oxide modified screen

printed carbon electrode. Taianta 2020, 208, 120389.

Songa, E.A.; Okonkwo, J.O. Taianta Recent approaches to

improving selectivity and sensitivity of Enzyme-based

biosensors for organophosphorus pesticides: A review.

Taianta 2016, 155, 289-304

Songa, E.A.; Arotiba, O.A.; Owino, J.H.; Jahed, N.; Baker,

P.G.; Iwuoha, E.l. Electrochemical detection of

glyphosate herbicide using horseradish peroxidase

immobilized on sulfonated polymer matrix.

Bioelectrochemistry 2009, 75, 117-123.

Zhang, W.-J.; Li, D.; Xu, Y.; Jiang, Z.; Chen, Y.; Wang, P.

Synthesis and Application of Novel Molecularly

Imprinted Solid Phase Extraction Materials Based on

Carbon Nanotubes for Determination of Carbofuran In

Human Serum by High Performance Liquid

Chromatography. J. Agric. Food Chern. 2019, 67, 5105-

Montes, R.; Cespedes, F.; Gabriel, D.; Baeza, M.

Electrochemical Biosensor Based on Optimized

Biocomposite For Organophosphorus and Carbamates

Pesticides Detection. J. Nanomater. 2018, 2018,1-13.

Dhull, V.; Gahlaut, A.; Dilbaghi, N.; Hooda, V.

Acetylcholinesterase Biosensors for Electrochemical

Detection of Organophosphorus Compounds: A Review.

Biochemistry Research International. Volume 2013, Article

ID 731501.

Weinbroum, A.A. Pathophysiological and clinical aspects of

combat anticholinesterase poisoning. British Medical

Bulletin 2004, 72:119-133.

Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology

of cholinesterase inhibitors: uses and misuses of a

common Mechanism of action. Environmental

Toxicology and Pharmacology 2005, 19, 3:433-446.

Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius,

S.; Viter, R.; Ramanavicius, A. From MicroorganismBased Amperometric Biosensors towards Microbial Fuel

Cells. Sensors 2021, 21, 2442.

Lei, Y.; Mulchandani, P.; Wang, J.; Chen, W.; Chen, W.;

Mulchandani, A. Highly sensitive and selective

amperometric microbial Biosensor for direct

determination of p-nitrophenyl-substituted

Organophosphate nerve agents. Environ. Sci. Technol.,

, 39: 8853-57.

Chouteau, C.; Dzyadevych, S.; Durrieu, C.; Chovelon, J. M. A

bienzymatic whole cell conductometric biosensor for

biosensor for heavy metal ions and pesticides detection

in water samples. Biosens. Bioelectron, 2005, 21:273-81.

Mulchandani, P.; Chen, W.; Mulchandani, A.; Wang, J.; Chen,

L. Amperometric microbial biosensor for direct determination of or- ganophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens. Bioelectron, 2001, 16: 433-37.

Growe, G.F.; de Oliveira, T.R.; de Andrade Narciso, E.;

Moccelini, S.K.; Terezo, A.J.; Soares, M.A.; Castilho, M.

Electrochemical biosensor for carbofuran pesticide

based on esterases from eupenicillium shearii FREI-39

Endophytic fungus. Biosens. Bioelectron. 2015, 63, 407-

Priti, M.; Wilfred, C.; Ashok, M. Microbial biosensor for

direct determination of nitrophenyl-substituted

organophosphate nerve agents using genetically

Moraxella sp. Anal. Chim. Acta, 2006, 568, 217-221.

Wang, J. Electrochemical nucleic acid biosensors. Anal.

Chim. Acta, 2002, 569, 63-71.

Lucrelli, F.; Kicela, A.; Palchetti, G.; Marrazza, G.; Mascini, M.

Electrochemical DNA biosensor for analysis of

wastewatersamples. Bioelectrochemistry, 2002, 58, 113-

Arora, K.; Chaubey, A.; Singhal. R.; Singh, R.P.; Samanta,

S.B.; Chand, S.;

electrochemically

sulphonate films

Malhotra, B.D. Application of

prepared polypyrrole-polyvinyl

to DNA biosensors. Biosens.

Bioelectron., 2006, 21:1777-83.

He, P.G.; Xu, Y.; Fang, Y.Z. A review: electrochemical DNA

biosensors for sequence recognition. Anal. Lett., 2005,

: 2597-2623.

Nirmal, P.; Kavita, A.; Surinder, P. S.; Manoj, K. P.; Harpal, S.;

Bansi, D. M. Polypyrrole-polyvinyl sulphonate film based

disposable nucleic acid biosensor. Anal. Chim. Acta,

, 589: 6-13.

Nirmal, P.; Sumana, G.; Kavita, A.; Harpal, S.; Malhotra, B.D.

Improved electrochemical nucleic acid biosensor based

on polyaniline-polyvinyl sulphonate. Taianta, 2008, 74:

-43.

Perez-Fernandez, B.; Mercader, J.V.; Checa-Orrego, B.I.; de

la Escosura-Muniz,A.; Costa-Garcia, A. A monoclonal

antibody-based immunosensor for the Electrochemical

detection of imidacloprid pesticide, Analyst 2019, 144.

Doi:10.1039/c9an00176j.

Hleli, S.; Martelet, C.; Abdelghani, A. Atrazine analysis using

an Impedimetric immunosensor based on mixed

biotinylated selfassembled monolayer. Sens. Actuators

B, 2006,113:711-17.

Wei, W.; Zong, X.; Wang, X.; Yin, L; Pu, Y.; Liu, S. A

disposable amperometric Immunosensor for

chlorpyrifos-methyl based on immunogen / platinum

doped Silica sol - gel film modified screen-printed

carbon electrode, Food Chern. 2012, 135: 888-892.

Romero, V.; Vila, V.; de la Calle, I.; Lavilla, I.; Bendicho, C.

Turn-on fluorescent sensor for the detection of

periodate anion following photochemical synthesis of

nitrogen and sulphur co-doped carbon dots from

vegetables. Sensors Actuators B Chern. 2019, 280:290-

Chang, M.M.; Ginjom, I.R.; Ng, S.M. Single-shot 'turn-off'

optical probe for rapid detection of paraoxon-ethyl

pesticide on vegetable utilising fluorescence carbon

dots. Sensors Actuators B Chern. 2017, 15,242, 22:1050-

Fatahi, Z.; Esfandiari, N.; Ehtesabi, H.; Bagheri, Z.; Tavana,

H.; Ranjbar, Z. Physicochemical and cytotoxicity analysis

of green synthesis carbon dots for cell imaging. EXCLI J

, 27,18:454-66.

Hou, J.; Dong, J.; Zhu, H.; Teng, X.; Ai, S.; Mang, M. A simple

and sensitive fluorescent sensor for methyl parathion

based on I -tyrosine methyl ester functionalized carbon

dots. Biosens Bioelectron [Internet]. 2015. June;68:20-6.

Rocaboy-Faquet, E.; Barthelmebs, L.; Calas-Blanchard, C.;

Noguer, T. A novel amperometric biosensor for Btriketone herbicides based on hydroxyphenylpyruvate

dioxygenase inhibition: A case study for sulcotrione.

Taianta 2016, 146, 510-516.

Bucur, B.; Munteanu, F.; Marty, J.; Vasilescu, A. Advances in

Enzyme-Based Biosensors for Pesticide Detection

Biosensors 2018, 8, 27; doi:10.3390/bios8020027.

Kandimalla, V.B.; Neeta, N.S.; Karanth, N.G.; Thakur, M.S;.

Roshini, K.R.; Rani, B.E.A.; Pash, A.; Karanth, N.G.K. Regeneration of ethyl parathion antibodies for repeated use in immunosensor: a study on dissociation of antigens from antibodies. Biosens. Bioelectron, 2004,20: 903-06.

Sardinha, J.P.M.; Gil, M.H.; Mercader, J.V.; Montoya, A. Enzymelinked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphosmethyl flow immunosensor.J. Immunol. Methods, 2002, 260:173-182.

Downloads

Published

2023-04-30

Issue

Section

Articles

How to Cite

Al-Yasari, A., Barakova, N., Matytcina, V., Rukhlyada, K., & Dobrinov, A. (2023). Modern Methods of Measuring Pesticides Using Biosensors. History of Medicine, 9(2). https://historymedjournal.com/HOM/index.php/medicine/article/view/507