Modern Methods of Measuring Pesticides Using Biosensors
Keywords:
Pesticides, Biosensors, Agricultural, Environment, Analyte, Organophosphate, TransducerAbstract
Because of the large amounts of commonly used pesticides as well as their impacts upon health and the environment, there is a high importance in finding an accurate and prompt pesticide analysis methods. This paper provides an overview for modern methods and trends in the measurement of pesticide contamination based on biosensors. Moreover, there are different types and classifications of biosensors which play a successful role in environmental and agricultural pollutant analysis, and process control. Present study, conducted on view the more development bio-receptors depending sensors in additional to fluorescent biosensor for pesticides detection. This review showed that biosensors depend on biological component (such as an enzyme, a DNA probe, antibody) as recognition elements/bio-receptors are more accurate and reliable than traditional analytical instruments. In conclusion, The application of the bio-sensor-based instrument to pesticide detections in environment and different biological products like the vegetables and fruits are successful and will be researched more in the future.
Downloads
References
World Health Organization. Human Biomonitoring: Facts
and Figures; WHO Regional Office for Europe:
Copenhagen, Denmark, 2015.
WHO (World Health Organization). Available online:
https://www.who.int/ (accessed on 30 December
.
United States Environmental Protection Agency (US EPA).
Available online: https://www.epa.gov/ (accessed on 30
December 2019).
Human Resources Council. United Nations General
Assembly. Report of the Special Rapporteur on the
Right to food. Available online:
https://www.ohchr.org/en/issues/food/pages/foodind
ex.aspx (accessed on 30 December 2019)
Grimalt, S.; Dehouck, P. Review of analytical methods for
the determination of pesticide residues in grapes. J.
Chromatogr. A 2016, 1433,1-23.
Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.
Determination of multi-pesticide residues in green tea
With a modi fi ed QuEChERS protocol coupled to
HPLC-MS/MS. Food Chern. 2019, 275: 255-264
Caso, E.L.; Plaguicidas, C.D.E.L.O.S. Andlisis de la directiva
europea 98/83/CE: Paradigma de la justificaciony
establecimiento de los valores parametricos. El caso
concreto de los plaguicidas. 2012, 86: 21-35.
Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J. A disposable
electrochemical immunosensor based on carbon
Screen-printed electrodes for the detection of prostate
specific antigen. Biosens. Bioelectron. 2012, 38: 355-361.
Chauhan, N.; Narang, J.; Jain, U. Amperometric
acetylcholinesterase biosensor for pesticides monitoring
Utilising iron oxide nanoparticles and poly(indole-5-
carboxylic acid). J. Exp. Nanosci. 2016, 11: 111-122.
Jaffrezic-Renault, N. New Trends in Biosensors for
Organophosphorus Pesticides. Sensors 2009, 1, 2, 2001:60-74.
Ronkainen, N.J.; H. B. Halsall, H.B. W. R. Heineman, W.R.
Electrochemical Biosensors. Chemical Society Reviews 2010, 39, 11:1747-1763.
Zhao, G.; Wang, H.; Liu. G. Advances in Biosensor-Based
Instruments for Pesticide Residues Rapid Detection.Int.
J. Electrochem. Sci. 2015,10.
Sun, X.; Liu, B.; Xia, K. A Sensitive and Regenerable
Biosensor for Organophosphate Pesticide Based on Self
Assembled Multilayer Film with CdTe as Fluorescence
Probe. Luminescence 2011, 26, 6: 616-621.
Oliveira, A.C.; and Mascaro, L.H. Evaluation of
Acetylcholinesterase Biosensor Based on Carbon
Nanotube Paste in the Determination of Chlorphe
nvinphos. International Journal of Analytical Chemistry
, Article ID 974216.
Sun, X.; and Wang, X. Acetylcholinesterase Biosensor Based
on Prussian Blue-Modified Electrode for Detecting
Organop hosphorous Pesticides. Biosensors and
Bioelectronics 2010, 25, 1-2:2611-2614.
Sassolas, A.; Prieto-Simon, B.; Marty, J. Biosensors for
Pesticide Detection: New Trends. American Journal of
Analytical Chemistry 2012, 3: 210-232.
Yu, G.; Wu, W.; Zhao, G.; Wei, X.; Lu, Q. Efficient
immobilization of acetylcholinesterase onto amino
functionalized carbon nanotubes for the fabrication of
high sensitive organophosphorus pesticides biosensors.
Biosens Bioelectron. 2015, 15, 68:288-294.
Jain, M.; Yadav, P.; Joshi, A.; Kodgire, P. Advances in
detection of hazardous organophosphorus compounds
using organophosphorus hydrolase based biosensors.
Crit Rev Toxicol. 2019, 49, 5:387-410.
Senbua, W.; Mearnchu, J.; Wichitwechkarn, J. Easy-to-use
and reliable absorbance-based MPH-GST biosensor for
the detection of methyl parathion pesticide. Biotechnol
Rep (Amst) 2020, 23,27:e00495.
Rapichai, W.; Chaichalerm, S.; Mearnchu, J.;
Wichitwechkarn, J. MPH-GST sensing microplate for
easy detection of organophosphate insecticides.
Biotechnol Lett. 2021, 43,4:933-944.
Lan, W.; Chen, G.; Cui, F.; Tan, F.; Liu, R.; Yushupujiang, M.
Development of a novel optical biosensor for detection
of organophosphorus pesticides based on methyl
parathion hydrolase immobilized by metal-chelate
affinity. Sensors (Basel), 2012,12,7:8477-90.
Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.;
Ahmad, B. Colorimetric Detection of Organophosphate
Pesticides Based on Acetylcholinesterase and
Cysteamine Capped Gold Nanoparticles as Nanozyme.
Sensors (Basel), 2021,21,23:8050.
Alonso, G.A.; Istamboulie, G.; Noguer, T.; Marty, J.-L.;
Munoz, R. Rapid determination of pesticide mixtures
using 'disposable biosensors based on genetically
modified enzymes and artificial neural networks.
Sensors and Actuators B, 2012,164, 1: 22-28.
Amine, A.; Mohammadi, H.; Bouais, I.; Palleschi, G. Enzyme
inhibition-based biosensors for food safety and
environmental monitoring. Biosens. Bioelectron, 2006,
, 1405-23.
Gamal A. E. Mostafa .Electrochemical Biosensors for the
Detection of Pesticides. The Open Electrochemistry
Journal, 2010, 2, 22-42.
Dan, D.; Jiawang, D.; Jie, C.; Jianming, Z.; Li, L. In situ
electrodeposited nanoparticles for facilitating electron
transfer across selfassembled monolayers in biosensor
design. Taianta, 2008, 74, 1337-43.
Kurbanoglu, S.; Ozkan, S.A.; Merkoq, A. Nanomaterialsbased enzyme electrochemical biosensors operating
Through inhibition for biosensing applications. Biosens.
Bioelectron. 2017, 89, 886-898.
Dou, J.; Fan, F.; Ding, A.; Cheng, L.; Sekar, R.; Wang, H.; Li,
S. A screen-printed, amperometric biosensor for the
determination of organophosphorus pesticides in water
samples. J. Environ. Sci. 2012, 24, 956-962.
Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly
sensitive amperometric sensing of nitrite utilizing bulkmodified MnO2 decorated Graphene oxide
nanocomposite screen-printed electrodes. Electrochim.
Acta 2017, 227, 255-266.
Thunkhamrak, C.; Chuntib, P.; Ounnunkad, K.; Banet, P.
Highly sensitive voltammetric immunosensor for the
detection of prostate specific antigen based on silver
nanoprobe assisted graphene oxide modified screen
printed carbon electrode. Taianta 2020, 208, 120389.
Songa, E.A.; Okonkwo, J.O. Taianta Recent approaches to
improving selectivity and sensitivity of Enzyme-based
biosensors for organophosphorus pesticides: A review.
Taianta 2016, 155, 289-304
Songa, E.A.; Arotiba, O.A.; Owino, J.H.; Jahed, N.; Baker,
P.G.; Iwuoha, E.l. Electrochemical detection of
glyphosate herbicide using horseradish peroxidase
immobilized on sulfonated polymer matrix.
Bioelectrochemistry 2009, 75, 117-123.
Zhang, W.-J.; Li, D.; Xu, Y.; Jiang, Z.; Chen, Y.; Wang, P.
Synthesis and Application of Novel Molecularly
Imprinted Solid Phase Extraction Materials Based on
Carbon Nanotubes for Determination of Carbofuran In
Human Serum by High Performance Liquid
Chromatography. J. Agric. Food Chern. 2019, 67, 5105-
Montes, R.; Cespedes, F.; Gabriel, D.; Baeza, M.
Electrochemical Biosensor Based on Optimized
Biocomposite For Organophosphorus and Carbamates
Pesticides Detection. J. Nanomater. 2018, 2018,1-13.
Dhull, V.; Gahlaut, A.; Dilbaghi, N.; Hooda, V.
Acetylcholinesterase Biosensors for Electrochemical
Detection of Organophosphorus Compounds: A Review.
Biochemistry Research International. Volume 2013, Article
ID 731501.
Weinbroum, A.A. Pathophysiological and clinical aspects of
combat anticholinesterase poisoning. British Medical
Bulletin 2004, 72:119-133.
Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology
of cholinesterase inhibitors: uses and misuses of a
common Mechanism of action. Environmental
Toxicology and Pharmacology 2005, 19, 3:433-446.
Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius,
S.; Viter, R.; Ramanavicius, A. From MicroorganismBased Amperometric Biosensors towards Microbial Fuel
Cells. Sensors 2021, 21, 2442.
Lei, Y.; Mulchandani, P.; Wang, J.; Chen, W.; Chen, W.;
Mulchandani, A. Highly sensitive and selective
amperometric microbial Biosensor for direct
determination of p-nitrophenyl-substituted
Organophosphate nerve agents. Environ. Sci. Technol.,
, 39: 8853-57.
Chouteau, C.; Dzyadevych, S.; Durrieu, C.; Chovelon, J. M. A
bienzymatic whole cell conductometric biosensor for
biosensor for heavy metal ions and pesticides detection
in water samples. Biosens. Bioelectron, 2005, 21:273-81.
Mulchandani, P.; Chen, W.; Mulchandani, A.; Wang, J.; Chen,
L. Amperometric microbial biosensor for direct determination of or- ganophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens. Bioelectron, 2001, 16: 433-37.
Growe, G.F.; de Oliveira, T.R.; de Andrade Narciso, E.;
Moccelini, S.K.; Terezo, A.J.; Soares, M.A.; Castilho, M.
Electrochemical biosensor for carbofuran pesticide
based on esterases from eupenicillium shearii FREI-39
Endophytic fungus. Biosens. Bioelectron. 2015, 63, 407-
Priti, M.; Wilfred, C.; Ashok, M. Microbial biosensor for
direct determination of nitrophenyl-substituted
organophosphate nerve agents using genetically
Moraxella sp. Anal. Chim. Acta, 2006, 568, 217-221.
Wang, J. Electrochemical nucleic acid biosensors. Anal.
Chim. Acta, 2002, 569, 63-71.
Lucrelli, F.; Kicela, A.; Palchetti, G.; Marrazza, G.; Mascini, M.
Electrochemical DNA biosensor for analysis of
wastewatersamples. Bioelectrochemistry, 2002, 58, 113-
Arora, K.; Chaubey, A.; Singhal. R.; Singh, R.P.; Samanta,
S.B.; Chand, S.;
electrochemically
sulphonate films
Malhotra, B.D. Application of
prepared polypyrrole-polyvinyl
to DNA biosensors. Biosens.
Bioelectron., 2006, 21:1777-83.
He, P.G.; Xu, Y.; Fang, Y.Z. A review: electrochemical DNA
biosensors for sequence recognition. Anal. Lett., 2005,
: 2597-2623.
Nirmal, P.; Kavita, A.; Surinder, P. S.; Manoj, K. P.; Harpal, S.;
Bansi, D. M. Polypyrrole-polyvinyl sulphonate film based
disposable nucleic acid biosensor. Anal. Chim. Acta,
, 589: 6-13.
Nirmal, P.; Sumana, G.; Kavita, A.; Harpal, S.; Malhotra, B.D.
Improved electrochemical nucleic acid biosensor based
on polyaniline-polyvinyl sulphonate. Taianta, 2008, 74:
-43.
Perez-Fernandez, B.; Mercader, J.V.; Checa-Orrego, B.I.; de
la Escosura-Muniz,A.; Costa-Garcia, A. A monoclonal
antibody-based immunosensor for the Electrochemical
detection of imidacloprid pesticide, Analyst 2019, 144.
Doi:10.1039/c9an00176j.
Hleli, S.; Martelet, C.; Abdelghani, A. Atrazine analysis using
an Impedimetric immunosensor based on mixed
biotinylated selfassembled monolayer. Sens. Actuators
B, 2006,113:711-17.
Wei, W.; Zong, X.; Wang, X.; Yin, L; Pu, Y.; Liu, S. A
disposable amperometric Immunosensor for
chlorpyrifos-methyl based on immunogen / platinum
doped Silica sol - gel film modified screen-printed
carbon electrode, Food Chern. 2012, 135: 888-892.
Romero, V.; Vila, V.; de la Calle, I.; Lavilla, I.; Bendicho, C.
Turn-on fluorescent sensor for the detection of
periodate anion following photochemical synthesis of
nitrogen and sulphur co-doped carbon dots from
vegetables. Sensors Actuators B Chern. 2019, 280:290-
Chang, M.M.; Ginjom, I.R.; Ng, S.M. Single-shot 'turn-off'
optical probe for rapid detection of paraoxon-ethyl
pesticide on vegetable utilising fluorescence carbon
dots. Sensors Actuators B Chern. 2017, 15,242, 22:1050-
Fatahi, Z.; Esfandiari, N.; Ehtesabi, H.; Bagheri, Z.; Tavana,
H.; Ranjbar, Z. Physicochemical and cytotoxicity analysis
of green synthesis carbon dots for cell imaging. EXCLI J
, 27,18:454-66.
Hou, J.; Dong, J.; Zhu, H.; Teng, X.; Ai, S.; Mang, M. A simple
and sensitive fluorescent sensor for methyl parathion
based on I -tyrosine methyl ester functionalized carbon
dots. Biosens Bioelectron [Internet]. 2015. June;68:20-6.
Rocaboy-Faquet, E.; Barthelmebs, L.; Calas-Blanchard, C.;
Noguer, T. A novel amperometric biosensor for Btriketone herbicides based on hydroxyphenylpyruvate
dioxygenase inhibition: A case study for sulcotrione.
Taianta 2016, 146, 510-516.
Bucur, B.; Munteanu, F.; Marty, J.; Vasilescu, A. Advances in
Enzyme-Based Biosensors for Pesticide Detection
Biosensors 2018, 8, 27; doi:10.3390/bios8020027.
Kandimalla, V.B.; Neeta, N.S.; Karanth, N.G.; Thakur, M.S;.
Roshini, K.R.; Rani, B.E.A.; Pash, A.; Karanth, N.G.K. Regeneration of ethyl parathion antibodies for repeated use in immunosensor: a study on dissociation of antigens from antibodies. Biosens. Bioelectron, 2004,20: 903-06.
Sardinha, J.P.M.; Gil, M.H.; Mercader, J.V.; Montoya, A. Enzymelinked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphosmethyl flow immunosensor.J. Immunol. Methods, 2002, 260:173-182.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.