RECENT ADVANCEMENTS AND CLINICAL APPLICATIONS OF LIPOSOMAL DELIVERY SYSTEMS IN CANCER TREATMENT
Keywords:
Liposome, Cancer, Delivery system, Combination therapyAbstract
The primary objective of this review is to elucidate the benefits of liposomal delivery systems in cancer treatment. The review aims to explore the advantages of targeted drug delivery using liposomal nanomedicine, the spatiotemporal fate of liposomes in the body, different types of liposome-based drug delivery systems, and the potential combination of liposomal agents with other therapeutic modalities. Comprehensive review of existing literature on liposomal nanomedicine for cancer therapy. Gathering recent insights into the spatiotemporal fate of liposomes following various routes of drug administration. Exploration and analysis of different types of liposome-based drug delivery systems and their distinct advantages in cancer therapy. Integration of Combinatorial Therapies: Examination of the combination of liposomal agents with photodynamic therapy and photothermal therapy. Targeted Drug Delivery: Liposomal nanomedicine offers targeted drug delivery, enhancing the efficacy of cancer treatment while minimizing harm to healthy tissues and cells. Spatiotemporal Fate of Liposomes: Insights into the behavior and distribution of liposomes in the body following different routes of drug administration. Types of Liposome-Based Drug Delivery Systems: Identification and analysis of various liposome-based drug delivery systems, each with its unique advantages in cancer therapy. Combination Therapies: The combination of liposomal agents with photodynamic therapy and photothermal therapy has shown improved tumortargeting efficiency and therapeutic outcomes. Enhanced Therapeutic Efficacy: Highlighting the potential of liposomal nanomedicine to improve the therapeutic efficacy of cancer treatments.
Downloads
References
Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer,
R., 2021. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug
Discov. 20, 101–124.
Mun, E.J., Babiker, H.M., Weinberg, U., Kirson, E.D., Von Hoff, D.D., 2018.
Tumortreating fields: a fourth modality in cancer treatment. Clin. Cancer Res. 24,
–275.
Dong, S., Liu, X., Bi, Y., Wang, Y., Antony, A., Lee, D., Huntoon, K., Jeong, S., Ma,
Y., Li, X., Deng, W., Schrank, B.R., Grippin, A.J., Ha, J., Kang, M., Chang, M., Zhao,
Y., Sun, R., Sun, X., Yang, J., Chen, J., Tang, S.K., Lee, L.J., Lee, A.S., Teng, L.,
Wang, S., Teng, L., Kim, B.Y.S., Yang, Z., Jiang, W., 2023. Adaptive design of
mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat.
Commun. 14, 6610.
Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R.J., Yang, Z., 2020a. Cellpenetrating peptides in diagnosis and treatment of human diseases: from preclinical
research to clinical application. Front. Pharmacol. 11, 697.
You, Y., Tian, Y., Yang, Z., Shi, J., Kwak, K.J., Tong, Y., Estania, A.P., Cao, J., Hsu,
W.H., Liu, Y., Chiang, C.L., Schrank, B.R., Huntoon, K., Lee, D., Li, Z., Zhao, Y.,
Zhang, H., Gallup, T.D., Ha, J., Dong, S., Li, X., Wang, Y., Lu, W.J., Bahrani, E., Lee,
L.J., Teng, L., Jiang, W., Lan, F., Kim, B.Y.S., Lee, A.S., 2023. Intradermally
delivered mRNA-encapsulating extracellular vesicles for collagen-replacement
therapy. Nat. Biomed. Eng. 7, 887–900.
Zhang, H., Wang, S., Sun, M., Cui, Y., Xing, J., Teng, L., Xi, Z., Yang, Z., 2022a.
Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front.
Immunol. 13, 1093607.
Bangham, A.D., Standish, M.M., Watkins, J.C., 1965. Diffusion of univalent ions
across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252.
Dong, S., Bi, Y., Sun, X., Zhao, Y., Sun, R., Hao, F., Sun, Y., Wang, Y., Li, X., Deng,
W., Liu, X., Ha, J., Teng, L., Gong, P., Xie, J., Kim, B.Y.S., Yang, Z., Jiang, W., Teng,
L., 2022. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects
in triple-negative breast cancer. Small 18, e2107690.
Shah, S., Dhawan, V., Holm, R., Nagarsenker, M.S., Perrie, Y., 2020. Liposomes:
advancements and innovation in the manufacturing process. Adv. Drug. Deliv. Rev.
-155, 102–122.
Zhang, T., Xu, X., Pan, Y., Yang, H., Han, J., Liu, J., Liu, W., 2023. Specific surface
modification of liposomes for gut targeting of food bioactive agents. Compr. Rev.
Food Sci. Food Saf. 22, 3685–3706.
Muthu, M.S., Singh, S., 2009. Targeted nanomedicines: effective treatment modalities
for cancer, AIDS and brain disorders. Nanomedicine 4, 105–118.
Johnson, S.M., Bangham, A.D., 1969. Potassium permeability of single compartment
liposomes with and without valinomycin. Biochim. Biophys. Acta 193, 82–91.
Gregoriadis, G., Ryman, B.E., 1971. Liposomes as carriers of enzymes or drugs: a
new approach to the treatment of storage diseases. Biochem. J. 124, 58.
Juliano, R.L., Stamp, D., 1975. The effect of particle size and charge on the clearance
rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res.
Commun. 63, 651–658.
Gregoriadis, G., 1976a. The carrier potential of liposomes in biology and medicine
(first of two parts). N. Engl. J. Med. 295, 704–710.
Gregoriadis, G., 1976b. The carrier potential of liposomes in biology and medicine
(second of two parts). N. Engl. J. Med. 295, 765–770.
Mezei, M., Gulasekharam, V., 1980. Liposomes–a selective drug delivery system for
the topical route of administration. Lotion dosage form. Life Sci. 26, 1473–1477.
Ganapathi, R., Krishan, A., Wodinsky, I., Zubrod, C.G., Lesko, L.J., 1980. Effect of
cholesterol content on antitumor activity and toxicity of liposome-encapsulated 1-
beta-D-arabinofuranosylcytosine in vivo. Cancer Res. 40, 630–633.
Gabizon, A., Papahadjopoulos, D., 1988. Liposome formulations with prolonged
circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA.
, 6949–6953.
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N.,
Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K., 2013. Liposome:
classification, preparation, and applications. Nanoscale Res. Lett. 8, 102.
Moss, K.H., Popova, P., Hadrup, S.R., Astakhova, K., Taskova, M., 2019. Lipid
nanoparticles for delivery of therapeutic RNA oligonucleotides. Mol. Pharm. 16,
–2277.
Kulkarni, J.A., Cullis, P.R., van der Meel, R., 2018. Lipid nanoparticles enabling gene
therapies: from concepts to clinical utility. Nucleic Acid Ther. 28, 146–157.
Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., Murphy-Benenato,
K.E., Mihai, C., Almarsson, O., ¨ Sahay, G., 2017. Boosting intracellular delivery of
lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718.
Hou, X., Zaks, T., Langer, R., Dong, Y., 2021. Lipid nanoparticles for mRNA delivery.
Nat. Rev. Mater. 6, 1078–1094.
Tenchov, R., Bird, R., Curtze, A.E., Zhou, Q., 2021. Lipid nanoparticles-from
liposomes to mRNA vaccine delivery, a landscape of research diversity and
advancement. ACS Nano 15, 16982–17015.
Menina, S., Eisenbeis, J., Kamal, M.A.M., Koch, M., Bischoff, M., Gordon, S.,
Loretz, B., Lehr, C.M., 2019. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv. Healthc. Mater. 8,
e1900564.
Semyachkina-Glushkovskaya, O., Shirokov, A., Blokhina, I., Telnova, V.,
Vodovozova, E., Alekseeva, A., Boldyrev, I., Fedosov, I., Dubrovsky, A., Khorovodov,
A., Terskov, A., Evsukova, A., Elovenko, D., Adushkina, V., Tzoy, M., Agranovich, I.,
Kurths, J., Rafailov, E., 2022. Intranasal delivery of liposomes to glioblastoma by
photostimulation of the lymphatic system. Pharmaceutics 15.
Jose, A., Labala, S., Venuganti, V.V., 2017. Co-delivery of curcumin and STAT3
siRNA using deformable cationic liposomes to treat skin cancer. J. Drug Target 25,
–341.
Keshavarz, A., Alobaida, A., McMurtry, I.F., Nozik-Grayck, E., Stenmark, K.R.,
Ahsan, F., 2019. CAR, a homing peptide, prolongs pulmonary preferential
vasodilation by increasing pulmonary retention and reducing systemic absorption of
liposomal fasudil. Mol Pharm 16, 3414–3429.
Si, Y., Tian, Q., Zhao, F., Kelly, S.H., Shores, L.S., Camacho, D.F., Sperling, A.I.,
Andrade, M.S., Collier, J.H., Chong, A.S., 2020. Adjuvant-free nanofiber vaccine
induces in situ lung dendritic cell activation and T(H)17 responses. Sci. Adv. 6,
eaba0995.
van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W.J.M., Lammers, T.,
Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017.
Meel, M.H., Guill´en Navarro, M., de Gooijer, M.C., Metselaar, D.S., Waranecki, P.,
Breur, M., Lagerweij, T., Wedekind, L.E., Koster, J., van de Wetering, M.D.,
Schouten-van Meeteren, N., Aronica, E., van Tellingen, O., Bugiani, M., Phoenix, T.
N., Kaspers, G.J.L., Hulleman, E., 2020. MEK/MELK inhibition and blood-brain
barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro. Oncol. 22, 58–69.
Matsumura, Y., Maeda, H., 1986. A new concept for macromolecular therapeutics in
cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the
antitumor agent smancs. Cancer Res. 46, 6387–6392.
Zhao, Z., Li, D., Wu, Z., Wang, Q., Ma, Z., Zhang, C., 2020. Research progress and
prospect of nanoplatforms for treatment of oral cancer. Front. Pharmacol. 11, 616101.
Foroozandeh, P., Aziz, A.A., 2018. Insight into cellular uptake and intracellular
trafficking of nanoparticles. Nanoscale Res. Lett. 13, 339.
Mylvaganam, S., Freeman, S.A., Grinstein, S., 2021. The cytoskeleton in
phagocytosis and macropinocytosis. Curr. Biol. 31, R619–r632.
Desai, A.S., Hunter, M.R., Kapustin, A.N., 2019. Using macropinocytosis for
intracellular delivery of therapeutic nucleic acids to tumour cells. Philos. Trans. R.
Soc. Lond. B 374, 20180156.
Gandek, T.B., van der Koog, L., Nagelkerke, A., 2023. A comparison of cellular
uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and
extracellular vesicles. Adv. Healthc. Mater. 12, e2300319.
Liu, C., Zhang, L., Zhu, W., Guo, R., Sun, H., Chen, X., Deng, N., 2020a. Barriers
and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin.
Dev. 18, 751–764.
Popov, L.D., 2022. Deciphering the relationship between caveolae-mediated
intracellular transport and signalling events. Cell Signal. 97, 110399.
Matthaeus, C., Taraska, J.W., 2020. Energy and dynamics of caveolae trafficking.
Front. Cell Dev. Biol. 8, 614472.
Csiszar, ´ A., Hersch, N., Dieluweit, S., Biehl, R., Merkel, R., Hoffmann, B., 2010.
Novel fusogenic liposomes for fluorescent cell labeling and membrane modification.
Bioconjug. Chem. 21, 537–543.
Tang, J., Rakshit, M., Chua, H.M., Darwitan, A., Nguyen, L.T.H., Muktabar, A.,
Venkatraman, S., Ng, K.W., 2021. Liposome interaction with macrophages and foam
cells for atherosclerosis treatment: effects of size, surface charge and lipid
composition. Nanotechnology 32.
Benne, N., Leboux, R.J.T., Glandrup, M., van Duijn, J., Lozano Vigario, F., Neustrup,
M. A., Romeijn, S., Galli, F., Kuiper, J., Jiskoot, W., Slütter, B., 2020. Atomic force
microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity
on antigen-specific regulatory T cell responses. J. Control Release 318, 246–255.
Chen, J., Xu, Z., Liu, Y., Mei, A., Wang, X., Shi, Q., 2023. Cellular absorption of
polystyrene nanoplastics with different surface functionalization and the toxicity to
RAW264.7 macrophage cells. Ecotoxicol. Environ. Saf. 252, 114574. Chen, L., Zhou,
S.F., Su, L., Song, J., 2019. Gas-mediated cancer bioimaging and therapy. ACS Nano
, 10887–10917.
Chen, C.K., Liao, J., Li, M.S., Khoo, B.L., 2020. Urine biopsy technologies: cancer
and beyond. Theranostics 10, 7872–7888.
Li, S.D., Huang, L., 2008. Pharmacokinetics and biodistribution of nanoparticles.
Mol. Pharm 5, 496–504.
Park, J.Y., Song, M.G., Kim, W.H., Kim, K.W., Lodhi, N.A., Choi, J.Y., Kim, Y.J.,
Kim, J.Y., Chung, H., Oh, C., Lee, Y.S., Kang, K.W., Im, H.J., Seok, S.H., Lee, D.S.,
Kim, E.E., Jeong, J.M., 2019. Versatile and finely tuned albumin nanoplatform based
on click chemistry. Theranostics 9, 3398–3409.
Tran, B.H., Yu, Y., Chang, L., Tan, B., Jia, W., Xiong, Y., Dai, T., Zhong, R., Zhang,
W., Le, V.M., Rose, P., Wang, Z., Mao, Y., Zhu, Y.Z., 2019. A novel liposomal spropargylcysteine: a sustained release of hydrogen sulfide reducing myocardial
fibrosis via TGF-β1/Smad pathway. Int. J. Nanomed. 14, 10061–10077.
Zheng, T., Wang, W., Wu, F., Zhang, M., Shen, J., Sun, Y., 2019. Zwitterionic
polymergatedAu@TiO(2) core-shell nanoparticles for imaging-guided combined
cancer therapy. Theranostics 9, 5035–5048.
Colino, C.I., Lanao, J.M., Gutierrez-Millan, C., 2020. Targeting of hepatic
macrophages by therapeutic nanoparticles. Front. Immunol. 11, 218.
Large, D.E., Abdelmessih, R.G., Fink, E.A., Auguste, D.T., 2021. Liposome
composition in drug delivery design, synthesis, characterization, and clinical
application. Adv. Drug. Deliv. Rev. 176, 113851.
Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.,
Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1.
Liu, M., Li, J., Zhao, D., Yan, N., Zhang, H., Liu, M., Tang, X., Hu, Y., Ding, J.,
Zhang, N., Liu, X., Deng, Y., Song, Y., Zhao, X., 2022. Branched PEG-modification:
a new strategy for nanocarriers to evade of the accelerated blood clearance
phenomenon and enhance anti-tumor efficacy. Biomaterials 283, 121415.
Børresen, B., Hansen, A.E., Fliedner, F.P., Henriksen, J.R., Elema, D.R.,
BrandtLarsen, M., Kristensen, L.K., Kristensen, A.T., Andresen, T.L., Kjær, A., 2020.
Noninvasive molecular imaging of the enhanced permeability and retention effect by
(64)Cu-liposomes: in vivo correlations with (68)Ga-RGD, fluid pressure, diffusivity
and (18)F-FDG. Int. J. Nanomed. 15, 8571–8581.
Wang, Z., Ye, Q., Yu, S., Akhavan, B., 2023. Poly Ethylene Glycol (PEG)-based
hydrogels for drug delivery in cancer therapy: a comprehensive review. Adv. Healthc.
Mater. 12, e2300105.
Barenholz, Y., 2012. Doxil®–the first FDA-approved nano-drug: lessons learned. J.
Control Release 160, 117–134.
Gabizon, A., Shmeeda, H., Barenholz, Y., 2003. Pharmacokinetics of pegylated
liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet.
, 419–436.
O’Brien, M.E., Wigler, N., Inbar, M., Rosso, R., Grischke, E., Santoro, A., Catane, R.,
Kieback, D.G., Tomczak, P., Ackland, S.P., Orlandi, F., Mellars, L., Alland, L.,
Tendler, C., 2004. Reduced cardiotoxicity and comparable efficacy in a phase III trial
of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional
doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15, 440–
Ding, H., Tan, P., Fu, S., Tian, X., Zhang, H., Ma, X., Gu, Z., Luo, K., 2022.
Preparation and application of pH-responsive drug delivery systems. J. Control
Release 348, 206–238.
Abri Aghdam, M., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M.,
Baghbanzadeh, A., de la Guardia, M., Mokhtarzadeh, A., 2019. Recent advances on
thermosensitive and pH-sensitive liposomes employed in controlled release. J.
Control Release 315, 1–22.
Buch, P.J., Chai, Y., Goluch, E.D., 2019. Treating polymicrobial infections in chronic
diabetic wounds. Clin. Microbiol. Rev. 32.
Fan, Y., Chen, C., Huang, Y., Zhang, F., Lin, G., 2017. Study of the pH-sensitive
mechanism of tumor-targeting liposomes. Colloids Surf. B 151, 19–25. Ferreira, F.,
Luxardi, G., Reid, B., Ma, L., Raghunathan, V., Zhao, M., 2020. Real-time
physiological measurements of oxygen using a non-invasive self-referencing optical
fiber microsensor. Nat. Protoc. 15, 207–235.
Rehman, F.U., Al-Waeel, M., Naz, S.S., Shah, K.U., 2020. Anticancer therapeutics: a
brief account on wide refinements. Am. J. Cancer Res. 10, 3599–3621.
Lee, S.Y., Fiorentini, G., Szasz, A.M., Szigeti, G., Szasz, A., Minnaar, C.A., 2020.
Quo vadis oncological hyperthermia (2020)? Front. Oncol. 10, 1690.
Pham, P.T.T., Le, X.T., Kim, H., Kim, H.K., Lee, E.S., Oh, K.T., Choi, H.G., Youn,
Y.S., 2020. Indocyanine green and curcumin co-loaded nano-fireball-like albumin
nanoparticles based on near-infrared-induced hyperthermia for tumor ablation. Int. J.
Nanomed. 15, 6469–6484.
Scutigliani, E.M., Liang, Y., Crezee, H., Kanaar, R., Krawczyk, P.M., 2021.
Modulating the heat stress response to improve hyperthermia-based anticancer
treatments. Cancers 13.
Jin, X., Lu, X., Zhang, Z., Lv, H., 2020. Indocyanine green-parthenolide
thermosensitive liposome combination treatment for triple-negative breast cancer. Int.
J. Nanomed. 15, 3193–3206.
Needham, D., Dewhirst, M.W., 2001. The development and testing of a new
temperaturesensitive drug delivery system for the treatment of solid tumors. Adv.
Drug. Deliv. Rev. 53, 285–305.
Boca Bene, I., Ciurea, A.I., Ciortea, C.A., Dudea, S.M., 2021. Pros and cons for
Automated Breast Ultrasound (ABUS): a narrative review. J. Pers. Med. 11. Borocci,
S., Bozzuto, G., Bombelli, C., Ceccacci, F., Formisano, G., Stringaro, A., Molinari,
A., Mancini, G., 2021. How stereochemistry of lipid components can affect lipid
organization and the route of liposome internalization into cells. Nanoscale 13,
–11993.
Edwards, I.A., De Carlo, F., Sitta, J., Varner, W., Howard, C.M., Claudio, P.P., 2023.
Enhancing targeted therapy in breast cancer by ultrasound-responsive nanocarriers.
Int. J. Mol. Sci. 24.
AlSawaftah, N.M., Paul, V., Kosaji, D., Khabbaz, L., Awad, N.S., Husseini, G.A.,
Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery
system. Artif. Cells Nanomed. Biotechnol. 50, 111–120.
Ashrafizadeh, M., Delfi, M., Zarrabi, A., Bigham, A., Sharifi, E., Rabiee, N.,
PaivaSantos, A.C., Kumar, A.P., Tan, S.C., Hushmandi, K., Ren, J., Zare, E.N.,
Makvandi, P., 2022. Stimuli-responsive liposomal nanoformulations in cancer
therapy: pre-clinical & clinical approaches. J. Control Release 351, 50–80.
Kartha, S., Yan, L., Ita, M.E., Amirshaghaghi, A., Luo, L., Wei, Y., Tsourkas, A.,
Winkelstein, B.A., Cheng, Z., 2020. Phospholipase A(2) inhibitor-loaded
phospholipid micelles abolish neuropathic pain. ACS Nano 14, 8103–8115.
Gao, A., Hu, X.L., Saeed, M., Chen, B.F., Li, Y.P., Yu, H.J., 2019. Overview of recent
advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol.
Sin. 40, 1129–1137.
Rahman, H.S., Othman, H.H., Hammadi, N.I., Yeap, S.K., Amin, K.M., Abdul Samad,
N., Alitheen, N.B., 2020. Novel drug delivery systems for loading of natural plant
extracts and their biomedical applications. Int. J. Nanomed. 15, 2439–2483.
Men, W., Zhu, P., Dong, S., Liu, W., Zhou, K., Bai, Y., Liu, X., Gong, S., Zhang, S.,
Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled
release with improved therapeutic efficacy in vivo. Drug Deliv. 27, 180–190.
Thomas, O.S., Weber, W., 2019. Overcoming physiological barriers to nanoparticle
delivery-are we there yet? Front. Bioeng. Biotechnol. 7, 415.
Xu, S., Cui, F., Huang, D., Zhang, D., Zhu, A., Sun, X., Cao, Y., Ding, S., Wang, Y.,
Gao, E., Zhang, F., 2019. PD-L1 monoclonal antibody-conjugated nanoparticles
enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int. J.
Nanomed. 14, 17–32.
Maffei, M.E., 2022. Magnetic fields and cancer: epidemiology, cellular biology, and
theranostics. Int. J. Mol. Sci. 23.
de Maar, J.S., Suelmann, B.B.M., Braat, M., van Diest, P.J., Vaessen, H.H.B.,
Witkamp, A. J., Linn, S.C., Moonen, C.T.W., van der Wall, E., Deckers, R., 2020.
Phase I feasibility study of Magnetic Resonance guided High Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and
cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the iGO study. BMJ Open 10, e040162.
Zhang, F., Parayath, N.N., Ene, C.I., Stephan, S.B., Koehne, A.L., Coon, M.E.,
Holland, E. C., Stephan, M.T., 2019. Genetic programming of macrophages to perform
antitumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974.
Chakraborty, S., Ozkan, A., Rylander, M.N., Woodward, W.A., Vlachos, P., 2019.
Mixture theory modeling for characterizing solute transport in breast tumor tissues. J.
Biol. Eng. 13, 46.
Hu, Y., Ran, M., Wang, B., Lin, Y., Cheng, Y., Zheng, S., 2020b. Co-delivery of
docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment.
Int. J. Nanomed. 15, 9703–9715.
Gallego-Jara, J., Lozano-Terol, G., Sola-Martínez, R.A., C´ anovas-Díaz, M., de Diego
Puente, T., 2020. A compressive review about Taxol(®): history and future challenges.
Molecules 25.
Wang, F., Porter, M., Konstantopoulos, A., Zhang, P., Cui, H., 2017. Preclinical
development of drug delivery systems for paclitaxel-based cancer chemotherapy. J.
Control Release 267, 100–118.
Dellapasqua, S., Trillo Aliaga, P., Munzone, E., Bagnardi, V., Pagan, E., Montagna, E.,
Cancello, G., Ghisini, R., Sangalli, C., Negri, M., Mazza, M., Iorfida, M., Cardillo, A.,
Sciandivasci, A., Bianco, N., De Maio, A.P., Milano, M., Campennì, G.M., Sansonno,
L., Viale, G., Morra, A., Leonardi, M.C., Galimberti, V., Veronesi, P., Colleoni, M.,
Pegylated liposomal doxorubicin (Caelyx(®)) as adjuvant treatment in earlystage luminal B-like breast cancer: a feasibility phase II trial. Curr. Oncol. 28, 5167–
Franco, Y.L., Vaidya, T.R., Ait-Oudhia, S., 2018. Anticancer and cardio-protective
effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer 10,
–141.
Dong, M., Luo, L., Ying, X., Lu, X., Shen, J., Jiang, Z., Wang, L., 2018. Comparable
efficacy and less toxicity of pegylated liposomal doxorubicin versus epirubicin for
neoadjuvant chemotherapy of breast cancer: a case-control study. Onco Targets Ther.
, 4247–4252.
Wollina, U., Dummer, R., Brockmeyer, N.H., Konrad, H., Busch, J.O., Kaatz, M.,
Knopf, B., Koch, H.J., Hauschild, A., 2003. Multicenter study of pegylated liposomal
doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98, 993–1001.
Moghassemi, S., Dadashzadeh, A., Azevedo, R.B., Feron, O., Amorim, C.A., 2021.
Photodynamic cancer therapy using liposomes as an advanced vesicular
photosensitizer delivery system. J. Control Release 339, 75–90.
Pramod Kumar, E.K., Um, W., Park, J.H., 2020. Recent developments in pathological
pHresponsive polymeric nanobiosensors for cancer theranostics. Front. Bioeng.
Biotechnol. 8, 601586.
Cheng, X., Gao, J., Ding, Y., Lu, Y., Wei, Q., Cui, D., Fan, J., Li, X., Zhu, E., Lu, Y.,
Wu, Q., Li, L., Huang, W., 2021. Multi-functional liposome: a powerful theranostic
nanoplatform enhancing photodynamic therapy. Adv. Sci. 8, e2100876.
Zhu, Y., Yu, F., Tan, Y., Wen, L., Li, Y., Yuan, H., Hu, F., 2020. Guiding appropriate
timing of laser irradiation by polymeric micelles for maximizing chemophotodynamic
therapy. Int. J. Nanomed. 15, 6531–6543.
Albarqi, H.A., Wong, L.H., Schumann, C., Sabei, F.Y., Korzun, T., Li, X., Hansen,
M.N., Dhagat, P., Moses, A.S., Taratula, O., Taratula, O., 2019. Biocompatible
nanoclusters with high heating efficiency for systemically delivered magnetic
hyperthermia. ACS Nano 13, 6383–6395.
Li, X., Lovell, J.F., Yoon, J., Chen, X., 2020. Clinical development and potential of
photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–
Forbes, N.A., Zasadzinski, J.A., 2010. Localized photothermal heating of temperature
sensitive liposomes. Biophys. J. 98, 274A.
You, J., Zhang, P.Z., Hu, F.Q., Du, Y.Z., Yuan, H., Zhu, J., Wang, Z.H., Zhou, J.L., Li,
C., 2014. Near-infrared light-sensitive liposomes for the enhanced photothermal tumor
treatment by the combination with chemotherapy. Pharm. Res. 31, 554–565.
Jiang, X., Zhang, B., Zhou, Z., Meng, L., Sun, Z., Xu, Y., Xu, Q., Yuan, A., Yu, L.,
Qian, H., Wu, J., Hu, Y., Liu, B., 2017. Enhancement of radiotherapy efficacy by
pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine. Drug Deliv.
, 1419–1428.
Sadeghi, N., Kok, R.J., Bos, C., Zandvliet, M., Geerts, W.J.C., Storm, G., Moonen,
C.T.W., Lammers, T., Deckers, R., 2019. Hyperthermia-triggered release of hypoxic
cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy
efficacy in vitro. Nanotechnology 30, 264001.
Xie, M., Ding, X., Chen, A., Xiao, H., Wang, X., Wang, Y., Zhang, H., 2020b.
Efficacy and safety of image-guided intensity-modulated radiation therapy and
volumetric modulated arc therapy combined with paclitaxel liposomes and cisplatin
for locally advanced stage IIB-IIIB cervical cancer: a retrospective study at a single
center. Med. Sci. Monit. 26, e927563.
Liu, G., Xu, X., Jiang, L., Ji, H., Zhu, F., Jin, B., Han, J., Dong, X., Yang, F., Li, B.,
b. Targeted antitumor mechanism of C-PC/CMC-CD55sp nanospheres in HeLa
cervical cancer cells. Front. Pharmacol. 11, 906.
Park, H., Saravanakumar, G., Kim, J., Lim, J., Kim, W.J., 2021. Tumor
microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv.
Healthc. Mater. 10, e2000834.
Guo, X., Liu, J., Jiang, L., Gong, W., Wu, H., He, Q., 2021. Sulourea-coordinated Pd
nanocubes for NIR-responsive photothermal/H(2)S therapy of cancer. J.
Nanobiotechnol. 19, 321.
Pascale, R.M., Calvisi, D.F., Simile, M.M., Feo, C.F., Feo, F., 2020. The
warburg effect 97 years after its discovery. Cancers 12.
Zhou, G., Chen, Y., Chen, W., Wu, H., Yu, Y., Sun, C., Hu, B., Liu, Y., 2023. Renal
clearable catalytic 2D Au-porphyrin coordination polymer augmented photothermalgas
synergistic cancer therapy. Small 19, e2206749.
Wang, S., Guo, X., Xiu, W., Liu, Y., Ren, L., Xiao, H., Yang, F., Gao, Y., Xu, C.,
Wang, L., 2020. Accelerating thrombolysis using a precision and clot-penetrating drug
delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204.
Lee, S.Y., Rim, Y., McPherson, D.D., Huang, S.L., Kim, H., 2014. A novel liposomal
nanomedicine for nitric oxide delivery and breast cancer treatment. Biomed. Mater.
Eng. 24, 61–67.
Yang, M., Li, J., Gu, P., Fan, X., 2021. The application of nanoparticles in cancer
immunotherapy: targeting tumor microenvironment. Bioact. Mater. 6, 1973–1987.
Lu, Y., Huntoon, K., Lee, D., Wang, Y., Ha, J., Qie, Y., Li, X., Schrank, B.R., Dong,
S., Gallup, T.D., Kang, M., Zhao, H., An, Y., Yang, Z., Li, J., Kim, B.Y.S., Jiang, W.,
Immunological conversion of solid tumours using a bispecific nanobioconjugate
for cancer immunotherapy. Nat. Nanotechnol. 17, 1332–1341.
Guo, J., Yu, Z., Das, M., Huang, L., 2020. Nano codelivery of oxaliplatin and folinic
acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal
cancer and liver metastasis. ACS Nano 14, 5075–5089.
Rios-Doria, J., Durham, N., Wetzel, L., Rothstein, R., Chesebrough, J., Holoweckyj,
N., Zhao, W., Leow, C.C., Hollingsworth, R., 2015. Doxil synergizes with cancer
immunotherapies to enhance antitumor responses in syngeneic mouse models.
Neoplasia 17, 661–670.
Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C., 2017. Cancer nanomedicine:
progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37. Shi, Y., Lammers,
T., 2019. Combining Nanomedicine and Immunotherapy. Acc. Chem. Res. 52, 1543–
Pei, Z., Chen, S., Ding, L., Liu, J., Cui, X., Li, F., Qiu, F., 2022. Current perspectives
and trend of nanomedicine in cancer: a review and bibliometric analysis. J. Control
Release 352, 211–241.
Wu, L.P., Wang, D., Li, Z., 2020. Grand challenges in nanomedicine. Mater. Sci. Eng.
C 106, 110302.
Etter, E.L., Mei, K.C., Nguyen, J., 2021. Delivering more for less: nanosized,
minimalcarrier and pharmacoactive drug delivery systems. Adv. Drug. Deliv. Rev. 179,
Ferreira Soares, D.C., Domingues, S.C., Viana, D.B., Tebaldi, M.L., 2020. Polymerhybrid nanoparticles: current advances in biomedical applications. Biomed.
Pharmacother. 131, 110695.
Dogan, E., Kisim, A., Bati-Ayaz, G., Kubicek, G.J., Pesen-Okvur, D., Miri, A.K.,
Cancer stem cells in tumormodeling: challenges and future directions. Adv.
Nanobiomed. Res. 1.
Guillen, K.P., Fujita, M., Butterfield, A.J., Scherer, S.D., Bailey, M.H., Chu, Z.,
DeRose, Y. S., Zhao, L., Cortes-Sanchez, E., Yang, C.H., Toner, J., Wang, G., Qiao, Y.,
Huang, X., Greenland, J.A., Vahrenkamp, J.M., Lum, D.H., Factor, R.E., Nelson, E.W.,
Matsen, C.B., Poretta, J.M., Rosenthal, R., Beck, A.C., Buys, S.S., Vaklavas, C., Ward,
J.H., Jensen, R.L., Jones, K.B., Li, Z., Oesterreich, S., Dobrolecki, L.E., Pathi, S. S.,
Woo, X.Y., Berrett, K.C., Wadsworth, M.E., Chuang, J.H., Lewis, M.T., Marth, G. T.,
Gertz, J., Varley, K.E., Welm, B.E., Welm, A.L., 2022. A human breast cancerderived
xenograft and organoid platform for drug discovery and precision oncology. Nat
Cancer 3, 232–250.
Hai, J., Zhang, H., Zhou, J., Wu, Z., Chen, T., Papadopoulos, E., Dowling, C.M.,
Pyon, V., Pan, Y., Liu, J.B., Bronson, R.T., Silver, H., Lizotte, P.H., Deng, J.,
Campbell, J.D., Sholl, L.M., Ng, C., Tsao, M.S., Thakurdin, C., Bass, A.J., Wong, K.K., 2020. Generation of genetically engineered mouse lung organoid models for
squamous cell lung cancers allows for the study of combinatorial immunotherapy.
Clin. Cancer Res. 26, 3431–3442.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.