Antibiotic Resistance in Hospital Settings and Historical Trends in Misuse of Penicillin

Authors

  • Pavani Kottapalli Indiana Wesleyan University Author
  • Beluri Talari Ranjith Kumar Osmania Medical college Author

DOI:

https://doi.org/10.48047/

Keywords:

Antibiotic resistance, hospital-acquired infections, multidrug-resistant bacteria, antimicrobial stewardship, public health

Abstract

Background: The discovery of Penicillin by Alexander Fleming revolutionized the treatment of bacterial infections. However, antibiotic resistance has grown significantly, driven by genetic mutations, horizontal gene transfer, and biochemical defense mechanisms like β-lactamase production and efflux pumps. High prescription rates, poor infection control, and contaminated hospital environments have led to the rise of multidrug-resistant (MDR) bacteria such as MRSA, VRE, and CRE, threatening global health.

Objectives: This paper aims to explore the history and mechanisms of antibiotic resistance, highlighting the role of modifiable factors such as overuse of antibiotics, ineffective infection control measures, and hospital contamination. It also examines current interventions, including Antibiotic Stewardship Programs (ASPs), and evaluates the potential for alternative solutions like bacteriophage therapy and precision medicine.

Methods: The review analyzes existing research on antibiotic resistance, focusing on genetic and biochemical mechanisms, hospital-related factors, and current interventions. It examines the effectiveness of ASPs and infection control measures in reducing the burden of Hospital-Acquired Infections (HAIs).

Results: Hospital-Acquired Infections remain a significant burden, with high mortality rates and healthcare costs. Although interventions like ASPs have been implemented, the decline in new antibiotic development by the pharmaceutical industry has left few options for treating resistant infections.

Conclusions: To address antibiotic resistance, a multi-faceted approach is necessary. This includes improved antibiotic policies, better surveillance, and research that links human, animal, and environmental health. Without global cooperation and action, antibiotic resistance could render modern medicine ineffective, making once-treatable infections deadly.

Downloads

Download data is not yet available.

References

Abban, M.K., Ayerakwa, E.A., Mosi, L. and Isawumi, A. (2023). The burden of hospital acquired infections and antimicrobial resistance. Heliyon, [online] 9(10), p.e20561. doi:https://doi.org/10.1016/j.heliyon.2023.e20561.

Abdelaziz, S.M., Aboshanab, K.M., Yahia, I.S., Yassien, M.A. and Hassouna, N.A. (2021). Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics, [online] 10(3), p.255. doi:https://doi.org/10.3390/antibiotics10030255.

Akande‐Sholabi, W. and Oyesiji, E. (2023). Antimicrobial stewardship: knowledge, perceptions, and factors associated with antibiotics misuse among consumer's visiting the community pharmacies in a Nigeria Southwestern State. Journal of Pharmaceutical Policy and Practice, 16(1). doi:https://doi.org/10.1186/s40545-023-00629-x.

Altarac, D., Gutch, M., Mueller, J., Ronsheim, M., Tommasi, R. and Perros, M. (2021). Challenges and opportunities in the discovery, development, and commercialization of pathogen-targeted antibiotics. Drug Discovery Today. doi:https://doi.org/10.1016/j.drudis.2021.02.014.

Ambade, S.S., Gupta, V.K., Bhole, R.P., Khedekar, P.B. and Chikhale, R.V. (2023). A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules (Basel, Switzerland), [online] 28(20), p.7008. doi:https://doi.org/10.3390/molecules28207008.

Arun, S., Xin, L., Gaonkar, O., Neppolian, B., Zhang, G. and Chakraborty, P. (2022). Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment. Science of The Total Environment, 851, p.158195. doi:https://doi.org/10.1016/j.scitotenv.2022.158195.

Abdallah, B., Benhassou, H.A., Sbabou, L., Régine Janel-Bintz, Choulier, L., Véronique Pitchon and Fechter, P. (2023). History as a Source of Innovation in Antimicrobial Drug Discovery. Biomedical & Pharmacology Journal, 16(2), pp.739–752. doi:https://doi.org/10.13005/bpj/2656.

Avershina, E., Shapovalova, V. and Shipulin, G. (2021). Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Frontiers in Microbiology, 12. doi:https://doi.org/10.3389/fmicb.2021.707330.

Bhattacharya, R., Bose, D., Khushabu Gulia and Jaiswal, A. (2023). Impact of antimicrobial resistance on sustainable development goals and the integrated strategies for meeting environmental and socio‐economic targets. Environmental Progress & Sustainable Energy, 43(1). doi:https://doi.org/10.1002/ep.14320.

Blot, S., Ruppé, E., Harbarth, S., Asehnoune, K., Poulakou, G., Luyt, C.-E., Rello, J., Klompas, M., Depuydt, P., Eckmann, C., Martin-Loeches, I., Povoa, P., Bouadma, L., Timsit, J.-F. and Zahar, J.-R. (2022). Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive and Critical Care Nursing, [online] 70(103227). doi:https://doi.org/10.1016/j.iccn.2022.103227.

Branda, F. and Scarpa, F. (2024). Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare's Future. Antibiotics, 13(6), pp.502–502. doi:https://doi.org/10.3390/antibiotics13060502.

Broom, A., Kenny, K., Prainsack, B. and Broom, J. (2020). Antimicrobial resistance as a problem of values? Views from three continents. Critical Public Health, pp.1–13. doi:https://doi.org/10.1080/09581596.2020.1725444.

CDC (2024). Antimicrobial Resistance Facts and Stats. [online] Antimicrobial Resistance. Available at: https://www.cdc.gov/antimicrobial-resistance/data-research/facts-stats/index.html.

Chavali, S., Menon, V. and Shukla, U. (2014). Hand hygiene compliance among healthcare workers in an accredited tertiary care hospital. Indian Journal of Critical Care Medicine, [online] 18(10), pp.689–693. doi:https://doi.org/10.4103/0972-5229.142179.

Chhabra, S., Taksande, A.B. and Munjewar, P. (2024). The Penicillin Pioneer: Alexander Fleming's Journey to a Medical Breakthrough. Cureus, [online] 16(7). doi:https://doi.org/10.7759/cureus.65179.

Christensen, I., Haug, J.B., Berild, D., Bjørnholt, J.V., Skodvin, B. and Jelsness-Jørgensen, L.-P. (2022). Factors Affecting Antibiotic Prescription among Hospital Physicians in a Low-Antimicrobial-Resistance Country: A Qualitative Study. Antibiotics, [online] 11(1), p.98. doi:https://doi.org/10.3390/antibiotics11010098.

Conlan, S., Park, M., Deming, C., Thomas, P.J., Young, A.C., Coleman, H., Sison, C., Weingarten, R.A., Lau, A.F., Dekker, J.P., Palmore, T.N., Frank, K.M. and Segre, J.A. (2016). Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio, [online] 7(3). doi:https://doi.org/10.1128/mbio.00742-16.

Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S. and Khan, W. (2022). Prevalence of ESKAPE Pathogens in the environment: Antibiotic Resistance status, community-acquired Infection and Risk to Human Health. International Journal of Hygiene and Environmental Health, [online] 244(114006), p.114006. doi:https://doi.org/10.1016/j.ijheh.2022.114006.

Dhami, N., Gangwar, M., Kumar, D., Rao, A.K. and Kumar, S. (2024). Beyond Antibiotics: Pioneering Strategies in Infection Control to Counter Antibiotic Resistance's Rising Tide. Emerging Paradigms for Antibiotic-Resistant Infections: Beyond the Pill, pp.173–196. doi:https://doi.org/10.1007/978-981-97-5272-0_8.

Douglas, A., Stewart, A., Halliday, C. and Sharon C.‐A. Chen (2023). Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. Journal of Fungi, 9(11), pp.1059–1059. doi:https://doi.org/10.3390/jof9111059.

Dutescu, I.A. and Hillier, S.A. (2021). Encouraging the Development of New Antibiotics: Are Financial Incentives the Right Way Forward? A Systematic Review and Case Study. Infection and Drug Resistance, 14(1), pp.415–434. doi:https://doi.org/10.2147/IDR.S287792.

Endale, H., Mathewos, M. and Abdeta, D. (2023). Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infection and Drug Resistance, Volume 16, pp.7515–7545. doi:https://doi.org/10.2147/idr.s428837.

Essack, S. (2021). Water, sanitation and hygiene in national action plans for antimicrobial resistance. Bulletin of the World Health Organization, [online] 99(08), pp.606–608. doi:https://doi.org/10.2471/blt.20.284232.

Ferraz, M.P. (2024). Antimicrobial Resistance: The Impact from and on Society According to One Health Approach. Societies, [online] 14(9), pp.187–187. doi:https://doi.org/10.3390/soc14090187.

Fleming-Dutra, K.E., Hersh, A.L. and Shapiro, D.J. (2016). Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA, [online] 315(17), p.1864. doi:https://doi.org/10.1001/jama.2016.4151.

Garvey, M. (2024). Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. International Journal of Molecular Sciences, [online] 25(1), p.201. doi:https://doi.org/10.3390/ijms25010201.

Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, [online] 23(5), pp.849–853. doi:https://doi.org/10.3201/eid2305.161556.

Georgios Schinas, Polyzou, E., Nikolaos Spernovasilis, Gogos, C., Dimopoulos, G. and Karolina Akinosoglou (2023). Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics, 12(8), pp.1255–1255. doi:https://doi.org/10.3390/antibiotics12081255.

Gibson, P.S., Bexkens, E., Zuber, S., Cowley, L.A. and Veening, J.-W. (2022). The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLOS Pathogens, 18(7), p.e1010727. doi:https://doi.org/10.1371/journal.ppat.1010727.

Gross, D. and Sampat, B. (2025). The Therapeutic Consequences of the War: World War II and the 20th-Century Expansion of Biomedicine. [online] doi:https://doi.org/10.3386/w33457.

Guzmán-Blanco, M., Labarca, J.A., Villegas, M.V. and Gotuzzo, E. (2014). Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. The Brazilian Journal of Infectious Diseases, [online] 18(4), pp.421–433. doi:https://doi.org/10.1016/j.bjid.2013.10.005.

Ha, D.R., Haste, N.M. and Gluckstein, D.P. (2019). The Role of Antibiotic Stewardship in Promoting Appropriate Antibiotic Use. American Journal of Lifestyle Medicine, [online] 13(4), pp.376–383. doi:https://doi.org/10.1177/1559827617700824.

Harald Brüssow (2024). The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology, 17(7). doi:https://doi.org/10.1111/1751-7915.14510.

Heshmatipour, Z., Arabameri, N., Eftekhar Ardebili, S. and Jafari Bidhendi, Z. (2021). The role of Gene Mutations (gyrA, parC) in Resistance to Ciprofloxacin in Clinical Isolates of Pseudomonas Aeruginosa. Iranian Journal of Pathology, 16(4), pp.426–432. doi:https://doi.org/10.30699/ijp.2021.520570.2542.

Ho, C.S., Wong, C.T.H., Aung, T.T., Lakshminarayanan, R., Mehta, J.S., Rauz, S., McNally, A., Kintses, B., Peacock, S.J., de la Fuente-Nunez, C., Hancock, R.E.W. and Ting, D.S.J. (2024). Antimicrobial resistance: a concise update. The Lancet Microbe, 6(1), p.100947. doi:https://doi.org/10.1016/j.lanmic.2024.07.010.

Iqbal, M.S., Khan, M.F., Farooqui, S., Khan, S.-U.-D., Vohra, S., Rasheed, S., Iqbal, M.Z. and Shafqat Qamer (2025). Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications. Medicina, [online] 61(3), pp.481–481. doi:https://doi.org/10.3390/medicina61030481.

Jangid, J. (2020). Efficient training data caching for deep learning in edge computing networks. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 6(5), 337-362. https://doi.org/10.32628/CSEIT20631113

Jeżak, K. and Kozajda, A. (2021). Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine—review. Environmental Science and Pollution Research, 29(7), pp.9533–9559. doi:https://doi.org/10.1007/s11356-021-17773-z.

Jiang, T., Imani, S., Zhou, A., Zhao Yuchun, Du, L.-L., Deng, S., Li, J. and Wang, Q. (2023). Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomedicine & Pharmacotherapy, 167, pp.115564–115564. doi:https://doi.org/10.1016/j.biopha.2023.115564.

Karthikeyan, D., Pal, S.K., Kumar, M., Kishore, K., Kaur, P. and Kumar, S. (2022). Molecular Mechanisms of Antimicrobial Resistance and New Targets to Address Current Drug Resistance. Benthamdirect.com, [online] pp.89–125. Available at: https://www.benthamdirect.com/content/books/9789815049879.chap9 [Accessed 28 Mar. 2025].

Kavanagh, K.T. (2019). Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrobial Resistance & Infection Control, [online] 8(1). doi:https://doi.org/10.1186/s13756-019-0550-2.

Kleinbeck, A. (2023). A Review of Staphylococcus aureus Pathogenesis, Global Impact, and the Rise of Antibiotic-Resistant Clones. [online] Digital Commons @ UConn. Available at: https://digitalcommons.lib.uconn.edu/srhonors_theses/1029/ [Accessed 28 Mar. 2025].

Kou, X., Yang, X. and Zheng, R. (2024). Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections. Applied and Environmental Microbiology, 90(10). doi:https://doi.org/10.1128/aem.01353-24.

Kourtis, A.P., Hatfield, K., Baggs, J., Mu, Y., See, I., Epson, E., Nadle, J., Kainer, M.A., Dumyati, G., Petit, S., Ray, S.M., Ham, D., Capers, C., Ewing, H., Coffin, N., McDonald, L.C., Jernigan, J. and Cardo, D. (2019). Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections — United States. MMWR. Morbidity and Mortality Weekly Report, [online] 68(9), pp.214–219. doi:https://doi.org/10.15585/mmwr.mm6809e1.

Kubeček, O., Paterová, P. and Novosadová, M. (2021). Risk Factors for Infections, Antibiotic Therapy, and Its Impact on Cancer Therapy Outcomes for Patients with Solid Tumors. Life, [online] 11(12), p.1387. doi:https://doi.org/10.3390/life11121387.

Kulik, K., Lenart-Boroń, A. and Wyrzykowska, K. (2023). Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water, 15(5), p.975. doi:https://doi.org/10.3390/w15050975.

Larsson, D.G.J. and Flach, C.-F. (2021). Antibiotic resistance in the environment. Nature Reviews Microbiology, [online] 20(5), pp.1–13. doi:https://doi.org/10.1038/s41579-021-00649-x.

Liu, G., Thomsen, L.E. and Olsen, J.E. (2021). Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. Journal of Antimicrobial Chemotherapy, 77(3). doi:https://doi.org/10.1093/jac/dkab450.

Llor, C. and Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, [online] 5(6), pp.229–241. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232501/.

Low, C.X., Tan, L.T.-H., Ab Mutalib, N.-S., Pusparajah, P., Goh, B.-H., Chan, K.-G., Letchumanan, V. and Lee, L.-H. (2021). Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics, 10(5), p.578. doi:https://doi.org/10.3390/antibiotics10050578.

Mandal, T.K. (2024). Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. Nanomaterials, 14(22), p.1847. doi:https://doi.org/10.3390/nano14221847.

Maugeri, A., Casini, B., Esposito, E., Bracaloni, S., Scarpaci, M., Patanè, F., Milazzo, G., Antonella Agodi and Barchitta, M. (2025). IMPACT OF ULTRAVIOLET LIGHT DISINFECTION ON REDUCING HOSPITAL-ASSOCIATED INFECTIONS: A SYSTEMATIC REVIEW IN HEALTHCARE ENVIRONMENTS. Journal of Hospital Infection. [online] doi:https://doi.org/10.1016/j.jhin.2025.01.014.

McCarthy, B., Apori, S.O., Giltrap, M., Bhat, A., Curtin, J. and Tian, F. (2021). Hospital Effluents and Wastewater Treatment Plants: A Source of Oxytetracycline and Antimicrobial-Resistant Bacteria in Seafood. Sustainability, 13(24), p.13967. doi:https://doi.org/10.3390/su132413967.

Mcdonnell, A., Dissanayake, R., Klemperer, K., Toxvaerd, F. and Sharland, M. (2024). The Economics of Antibiotic Resistance. [online] Available at: https://www.cgdev.org/sites/default/files/economics-antibiotic-resistance.pdf.

Mölstad, S., Löfmark, S., Carlin, K., Erntell, M., Aspevall, O., Blad, L., Hanberger, H., Hedin, K., Hellman, J., Norman, C., Skoog, G., Stålsby-Lundborg, C., Tegmark Wisell, K., Åhrén, C. and Cars, O. (2017). Lessons learnt during 20 years of the Swedish strategic programme against antibiotic resistance. Bulletin of the World Health Organization, [online] 95(11), pp.764–773. doi:https://doi.org/10.2471/blt.16.184374.

Monegro, A.F., Muppidi, V. and Regunath, H. (2023). Hospital acquired infections. [online] Nih.gov. Available at: https://www.ncbi.nlm.nih.gov/books/NBK441857/.

Muteeb, G., Rehman, T., Shahwan, M. and Aatif, M. (2023). Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals, [online] 16(11), pp.1615–1615. doi:https://doi.org/10.3390/ph16111615.

Mutuku, C., Gazdag, Z. and Melegh, S. (2022). Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World Journal of Microbiology & Biotechnology, [online] 38(9), p.152. doi:https://doi.org/10.1007/s11274-022-03334-0.

Nanayakkara, A.K., Boucher, H.W., Fowler, V.G., Jezek, A., Outterson, K. and Greenberg, D.E. (2021). Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA: A Cancer Journal for Clinicians, 71(6), pp.488–504. doi:https://doi.org/10.3322/caac.21697.

Noster, J., Thelen, P. and Hamprecht, A. (2021). Detection of Multidrug-Resistant Enterobacterales—From ESBLs to Carbapenemases. Antibiotics, 10(9), p.1140. doi:https://doi.org/10.3390/antibiotics10091140.

Ogunleye, O.O., Oyawole, M.R., Odunuga, P.T., Kalejaye, F., Yinka-Ogunleye, A.F., Olalekan, A., Ogundele, S.O., Ebruke, B.E., Kalada Richard, A., Anand Paramadhas, B.D., Kurdi, A., Sneddon, J., Seaton, A. and Godman, B. (2021). A multicentre point prevalence study of antibiotics utilization in hospitalized patients in an urban secondary and a tertiary healthcare facilities in Nigeria: findings and implications. Expert Review of Anti-infective Therapy, 20(2), pp.297–306. doi:https://doi.org/10.1080/14787210.2021.1941870.

Otter, J.A., Doumith, M., Davies, F., Mookerjee, S., Dyakova, E., Gilchrist, M., Brannigan, E.T., Bamford, K., Galletly, T., Donaldson, H., Aanensen, D.M., Ellington, M.J., Hill, R., Turton, J.F., Hopkins, K.L., Woodford, N. and Holmes, A. (2017). Emergence and clonal spread of colistin resistance due to multiple mutational mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Scientific Reports, 7(1). doi:https://doi.org/10.1038/s41598-017-12637-4.

Palacios Araya, D., Palmer, K.L. and Duerkop, B.A. (2021). CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLOS Pathogens, 17(7), p.e1009672. doi:https://doi.org/10.1371/journal.ppat.1009672.

Park, S. and Ronholm, J. (2021). Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clinical Microbiology Reviews, 34(2). doi:https://doi.org/10.1128/cmr.00182-20.

Paul, D., Verma, J., Banerjee, A., Konar, D. and Das, B. (2022). Antimicrobial Resistance Traits and Resistance Mechanisms in Bacterial Pathogens. Antimicrobial Resistance, pp.1–27. doi:https://doi.org/10.1007/978-981-16-3120-7_1.

Pierre, G. (2024). GARDP. [online] GARDP. Available at: https://gardp.org/gardp-welcomes-the-publication-of-the-lancet-series-on-sustainable-access-to-effective-antibiotic/ [Accessed 28 Mar. 2025].

Porter, G., Kotwani, A., Bhullar, L. and Joshi, J. (2021). Over-the-counter sales of antibiotics for human use in India: The challenges and opportunities for regulation. Medical Law International, 21(2), pp.147–173. doi:https://doi.org/10.1177/09685332211020786.

Rahman, M., Fliss, I. and Biron, E. (2022). Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics, 11(6), p.766. doi:https://doi.org/10.3390/antibiotics11060766.

Raza, A., Mushtaq, N., Jabbar, A. and El-Sayed Ellakwa, D. (2024). Antimicrobial peptides: A promising solution to combat colistin and carbapenem resistance. Gene Reports, [online] 36, p.101935. doi:https://doi.org/10.1016/j.genrep.2024.101935.

Rehan, H. (2023). Penicillin and the Antibiotics Revolution Global History. Asian Journal of Pharmaceutical Research, [online] 13(1). Available at: https://www.indianjournals.com/ijor.aspx?target=ijor:ajpr&volume=13&issue=1&article=011.

Sambaza, S.S. and Naicker, N. (2023). Contribution of wastewater to antimicrobial resistance: A review article. Journal of Global Antimicrobial Resistance, [online] 34, pp.23–29. doi:https://doi.org/10.1016/j.jgar.2023.05.010.

Sharma, K., Tak, V., Nag, V.L., Bhatia, P.K. and Kothari, N. (2023). An observational study on carbapenem-resistant Enterobacterales (CRE) colonisation and subsequent risk of infection in an adult intensive care unit (ICU) at a tertiary care hospital in India. Infection Prevention in Practice, [online] 5(4), p.100312. doi:https://doi.org/10.1016/j.infpip.2023.100312.

Singh, K., Kumar, P., Sahu, R., Singh, A.K. and Kumar, A. (2022). Bacteriophages concept and applications: A review on phage therapy. Current Pharmaceutical Biotechnology, 24. doi:https://doi.org/10.2174/1389201024666221104142457.

Stivers, T. and Timmermans, S. (2021). Arriving at no: Patient pressure to prescribe antibiotics and physicians' responses. Social Science & Medicine, [online] 290, p.114007. doi:https://doi.org/10.1016/j.socscimed.2021.114007.

Struelens, M.J., Ludden, C., Werner, G., Vitali Sintchenko, Pikka Jokelainen and Ip, M. (2024). Real-time genomic surveillance for enhanced control of infectious diseases and antimicrobial resistance. Frontiers in science, 2. doi:https://doi.org/10.3389/fsci.2024.1298248.

Sulis, G., Sayood, S. and Gandra, S. (2021). Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Review of Anti-infective Therapy, 20(2), pp.147–160. doi:https://doi.org/10.1080/14787210.2021.1951705.

Thi, M.T.T., Wibowo, D. and Rehm, B.H.A. (2020). Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, [online] 21(22), p.8671. doi:https://doi.org/10.3390/ijms21228671.

Uddin, T.M., Chakraborty, A.J., Khusro, A., Zidan, B.R.M., Mitra, S., Emran, T.B., Dhama, K., Ripon, Md.K.H., Gajdács, M., Sahibzada, M.U.K., Hossain, Md.J. and Koirala, N. (2021). Antibiotic Resistance in microbes: History, mechanisms, Therapeutic Strategies and Future Prospects. Journal of Infection and Public Health, 14(12), pp.1750–1766.

Van Nieuwenhuyse, B., Van der Linden, D., Chatzis, O., Lood, C., Wagemans, J., Lavigne, R., Schroven, K., Paeshuyse, J., de Magnée, C., Sokal, E., Stéphenne, X., Scheers, I., Rodriguez-Villalobos, H., Djebara, S., Merabishvili, M., Soentjens, P. and Pirnay, J.-P. (2022). Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nature Communications, [online] 13(1), p.5725. doi:https://doi.org/10.1038/s41467-022-33294-w.

Ventola, C.L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, [online] 40(4), p.277. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC4378521/.

Wei, L., Wu, L., Wen, H., Feng, Y., Zhu, S., Liu, Y., Tang, L., Doughty, E., Willem van Schaik, McNally, A. and Zong, Z. (2021). Spread of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit: A Whole-Genome Sequence-Based Prospective Observational Study. Microbiology Spectrum, 9(1). doi:https://doi.org/10.1128/spectrum.00058-21.

Wubetu Yihunie Belay, Getachew, M., Bantayehu Addis Tegegne, Zigale Hibstu Teffera, Dagne, A., Tirsit Ketsela Zeleke, Rahel Belete Abebe, Abebaw Abie Gedif, Abebe Fenta, Getasew Yirdaw, Tilahun, A. and Yibeltal Aschale (2024). Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Frontiers in Pharmacology, 15. doi:https://doi.org/10.3389/fphar.2024.1444781.

Yang, X., Li, X., Qiu, S., Liu, C., Chen, S., Xia, H., Zeng, Y., Shi, L., Chen, J., Zheng, J., Yang, S., Tian, G., Liu, G. and Yang, L. (2024). Global antimicrobial resistance and antibiotic use in COVID-19 patients within health facilities: A systematic review and meta-analysis of aggregated participant data. The Journal of Infection, [online] 89(1), p.106183. doi:https://doi.org/10.1016/j.jinf.2024.106183.

Zhao, A.P., Li, S., Cao, Z., Hu, P.J.-H., Wang, J., Xiang, Y., Xie, D. and Lu, X. (2024). AI for Science: Predicting Infectious Diseases. Journal of safety science and resilience, 5(2). doi:https://doi.org/10.1016/j.jnlssr.2024.02.002.

Downloads

Published

2025-01-31

How to Cite

Pavani Kottapalli, & Beluri Talari Ranjith Kumar. (2025). Antibiotic Resistance in Hospital Settings and Historical Trends in Misuse of Penicillin. History of Medicine, 11(1), 139-151. https://doi.org/10.48047/