Leveraging Psychrophilic PGPR Strains for Enhanced Wheat Growth: A Sustainable Biofertilizer Approach

Authors

  • Safia Saher Department of Bio Sciences and Management Sciences COMSATS University Islamabad, Pakistan Author
  • Samia Zahid Department of Health Informatics COMSATS University Islamabad, Pakistan. Author
  • Sofia Arif Department of Bio Sciences and Management Sciences COMSATS University Islamabad, Pakistan. Author
  • Usman Wajid University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan. Author

DOI:

https://doi.org/10.48047/HM.10.2.2024.1450-1466

Keywords:

Psychrophilic PGPR, Wheat Growth, Biofertilizers, Sustainable Agriculture, Cold Environments

Abstract

Psychrophilic Plant Growth-Promoting Rhizobacteria (PGPR) play a crucial role in enhancing sustainable wheat production in cold environments by promoting plant growth through various mechanisms and serving as effective biofertilizers. These bacteria can tolerate a wide range of temperatures, from as low as -8°C to as high as 36°C, making them well-suited for cold climates. (1). They enhance plant growth by solubilizing essential nutrients like phosphorus and zinc, even at low temperatures, and producing phytohormones such as indole-3-acetic acid that stimulate root elongation (1,2). Some psychrophilic PGPR can also fix atmospheric nitrogen, providing an additional source of nutrients for plants (1). Additionally, these bacteria induce stress tolerance mechanisms in plants, enabling them to better withstand cold stress by activating protective genes and producing antifreeze proteins (3). Studies have shown that the application of psychrophilic PGPR, either as individual strains or as consortia, can significantly reduce the need for synthetic fertilizers without compromising wheat yield and quality (2). When applied with half the recommended dose of fertilizers, these bacteria can maximize crop parameters and yield, providing a sustainable approach to wheat production in cold regions (2). The use of psychrophilic PGPR as biofertilizers has been found effective in yield optimization under temperature-stressed conditions, making them a promising solution for addressing food security concerns in the face of climate change (3). By improving nutrient availability, plant growth, and stress tolerance, psychrophilic PGPR contribute to the development of eco-friendly and resilient agricultural practices in cold environments.

Downloads

Download data is not yet available.

References

Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in microbiology, 12, 628379. https://doi.org/10.3389/fmicb.2021.628379

Abdullah, M., Tariq, M., Zahra, S. T., Ahmad, A., Zafar, M., & Ali, S. (2023). Potential of psychrotolerant rhizobacteria for the growth promotion of wheat (Triticum aestivum L.). PeerJ, 11, e16399. https://doi.org/10.7717/peerj.16399

Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, 1002448. doi.org/10.3389/fpls.2022.1002448 .

Aryal, J. P., Sapkota, T. B., Krupnik, T. J., Rahut, D. B., Jat, M. L., & Stirling, C. M. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research, 28(37), 51480-51496.

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., ... & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473

Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and molecular biology, 35(4 (suppl)), 1044–1051. https://doi.org/10.1590/s1415-47572012000600020

Chauhan, M., Kimothi, A., Sharma, A., & Pandey, A. (2023). Cold adapted Pseudomonas: ecology to biotechnology. Frontiers in Microbiology, 14, 1218708. https://doi.org/10.3389/fmicb.2023.1218708

Chen, Z., Zhou, W., Sui, X., Xu, N., Zhao, T., Guo, Z., ... & Wang, Q. (2022). Plant growth-promoting rhizobacteria with ACC deaminase activity enhance maternal lateral root and seedling growth in switchgrass. Frontiers in Plant Science, 12, 800783. https://doi.org/10.3389/fpls.2021.800783

Chouyia, F. E., Romano, I., Fechtali, T., Fagnano, M., Fiorentino, N., Visconti, D., ... & Pepe, O. (2020). P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Frontiers in Plant Science, 11, 1137. https://doi.org/10.3389/fpls.2020.01137

de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088

Erenstein, O., Jaleta, M., Mottaleb, K.A., Sonder, K., Donovan, J., Braun, HJ. (2022). Global Trends in Wheat Production, Consumption and Trade. In: Reynolds, M.P., Braun, HJ. (eds) Wheat Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-90673-3_4.

Gowtham, H. G., Singh, S. B., Shilpa, N., Aiyaz, M., Nataraj, K., Udayashankar, A. C., ... & Sayyed, R. Z. (2022). Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants, 11(9), 1763. https://doi.org/10.3390/antiox11091763

Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in microbiology, 10, 1506. https://doi.org/10.3389/fmicb.2019.01506

Gupta, V., Chandran, S., Deep, A., Kumar, R., & Bisht, L. (2022). Environmental factors affecting the diversity of psychrophilic microbial community in the high-altitude snow-fed lake Hemkund, India. Current research in microbial sciences, 3, 100126. https://doi.org/10.1016/j.crmicr.2022.100126

Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in microbiology, 6, 1360. https://doi.org/10.3389/fmicb.2015.01360

Jeyanthi V, Kanimozhi S. Plant Growth Promoting Rhizobacteria (PGPR) – Prospective and Mechanisms: A Review. J Pure Appl Microbiol. 2018;12(2):733-749. https://doi.org/10.22207/JPAM.12.2.34

Kang, J., Wang, J., Heal, M. R., Goulding, K., de Vries, W., Zhao, Y., ... & Xu, W. (2023). Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production. Nature Food, 4(9), 751-761.

Kour, D., & Yadav, A. N. (2023). Alleviation of cold stress in wheat with psychrotrophic phosphorus solubilizing Acinetobacter rhizosphaerae EU-KL44. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 54(1), 371–383. https://doi.org/10.1007/s42770-023-00913-7

Kudoyarova, G., Arkhipova, T., Korshunova, T., Bakaeva, M., Loginov, O., & Dodd, I. C. (2019). Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Frontiers in plant science, 10, 1368. https://doi.org/10.3389/fpls.2019.01368

Mekonnen, H., Kibret, M. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem. Biol. Technol. Agric. 8, 15 (2021). https://doi.org/10.1186/s40538-021-00213-y

Mohanty, P., Singh, P. K., Chakraborty, D., Mishra, S., & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5, 667150. https://doi.org/10.3389/fsufs.2021.667150

Nozaki, S. (2022). Reducing the Environmental Impact of Chemical Fertilizers Is Increasingly Important for Sustainable Agriculture. Mitsui & Co. Global Strategic Studies Institute Monthly Report.

Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs, 1-20.

Podile, A.R., Kishore, G.K. (2007). Plant growth-promoting rhizobacteria. In: Gnanamanickam, S.S. (eds) Plant-Associated Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4538-7_6

Qingwei, Z., Lushi, T., Yu, Z. et al. Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiol 23, 221 (2023). https://doi.org/10.1186/s12866-023-02953-3

Rashmi, I., Roy, T., Kartika, K. S., Pal, R., Coumar, V., Kala, S., & Shinoji, K. C. (2020). Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. Contaminants in Agriculture: Sources, Impacts and Management, 3-41.

Rizvi, A.; Ahmed, B.; Khan, M.S.; Umar, S.; Lee, J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021, 9, 2451. https://doi.org/10.3390/microorganisms9122451

Latif, R., & Wajid, U. (2024). Isolation and Identification of Bacteriumon DiagnosticPathology Laboratory Hardware. International Journal of Natural Medicine and Health Sciences, 3(2), 01-12. https://journals.iub.edu.pk/index.php/ijnms/article/view/2640.

Sheirdil, R. A., Hayat, R., Zhang, X. X., Abbasi, N. A., Ali, S., Ahmed, M., ... & Ahmad, S. (2019). Exploring potential soil bacteria for sustainable wheat (Triticum aestivum L.) production. Sustainability, 11(12), 3361. https://doi.org/10.3390/su11123361

Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and energy security, 4(3), 178–202. https://doi.org/10.1002/fes3.64.

Singh, J. S. (2013). Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance, 18(3), 275-281. https://doi.org/10.1007/s12045-013-0038-y

Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Frontiers in microbiology, 6, 937. https://doi.org/10.3389/fmicb.2015.00937

Strugnell, L. (2018). New publications: the importance of wheat in the global food supply to a growing population.

Vega-Celedón, P., Bravo, G., Velásquez, A., Cid, F. P., Valenzuela, M., Ramírez, I., Vasconez, I. N., Álvarez, I., Jorquera, M. A., & Seeger, M. (2021). Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms, 9(3), 538. https://doi.org/10.3390/microorganisms9030538

Paris Anwar, A. A., Imtiaz, M., Usman Wajid, M. D., Muccee, F., Sajid-ur-Rehman, M. A., Sumreen, L., ... & Arshad, S. PREVALENCE AND ANTIBIOGRAM OF MRSA ISOLATED FROM VARIOUS CLINICAL SPECIMENS IN A TERTIARY CARE HOSPITAL IN PESHAWAR. https://doi.org/10.53555/ecb/2023.12.11.76.

Wang, Y., Zhang, G., Huang, Y., Guo, M., Song, J., Zhang, T., ... & Liu, H. (2022). A potential biofertilizer—siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis. Frontiers in Microbiology, 13, 870413. https://doi.org/10.3389/fmicb.2022.870413

Zubair, M., Hanif, A., Farzand, A., Sheikh, T. M. M., Khan, A. R., Suleman, M., Ayaz, M., & Gao, X. (2019). Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms, 7(9), 337. https://doi.org/10.3390/microorganisms7090337.

Downloads

Published

2024-04-30

How to Cite

Saher, S., Zahid, S., Arif, S., & Wajid, U. (2024). Leveraging Psychrophilic PGPR Strains for Enhanced Wheat Growth: A Sustainable Biofertilizer Approach. History of Medicine, 10(2), 1450-1466. https://doi.org/10.48047/HM.10.2.2024.1450-1466