

Beyond the Tennis Elbow: A Modern Evidence Map and Therapeutic Update on Lateral Epicondylitis

Dr Mavish Mushtaq, Dr Anurag Varshney, Dr Gagan Arora, Dr Surya Vijay Singh, Dr Sumit Kumar Singh.

*Department of Orthopaedics, Rama Medical College and Hospital, Hapur, Uttar Pradesh– 245304
Email:mavishbhatt20@gmail.com*

Abstract :

A common degenerative tendinopathy affecting the origin of the extensor carpi radialis brevis (ECRB), lateral epicondylitis (LE), also known as tennis elbow, has a reported incidence of 1–3 percent in the general population and a peak prevalence in people aged 40–50 years (1–3). The condition has a substantial functional and socioeconomic burden because of pain and loss of upper limb function, even though its natural history is generally benign and self-limiting (4,5). With histopathological findings showing angiofibroblastic hyperplasia, collagen disarray, and neovascularization, pathophysiological understanding has changed from an inflammatory to a degenerative model (6–8). In complex or resistant presentations, advanced imaging modalities are used to supplement the diagnosis, which is still primarily clinical (9–12)..

More than 40 treatment approaches are described in more than 40 years of literature. Activity modification, nonsteroidal anti-inflammatory medications, bracing, and structured physiotherapy protocols emphasizing eccentric strengthening are examples of first-line interventions (13–17). While modalities like extracorporeal shock wave therapy and botulinum toxin injections are used as adjuncts in certain cases, biological therapies like autologous blood products and platelet-rich plasma have demonstrated encouraging but erratic results (18–21). With documented success rates of over 85%, surgical interventions, such as open, arthroscopic, and percutaneous methods like the Nirschl procedure, are saved for cases that are resistant (22–25).

The lack of standardized diagnostic frameworks and outcome measures leads to heterogeneity in reported results (28–30), even though the majority of patients improve with conservative care in 3–18 months (26, 27). To improve evidence-based treatment of lateral epicondylitis, future studies should concentrate on high-quality randomized controlled trials, standardization of biologic therapies, and consistent outcome evaluations.

Keywords: *Lateral epicondylitis, tennis elbow, extensor carpi radialis brevis, tendinopathy, conservative therapy, PRP, Nirschl procedure, surgery, rehabilitation, biologics.*

Introduction: A degenerative tendinopathy of the common extensor origin at the lateral epicondyle, lateral epicondylitis (LE), also referred to as tennis elbow, most frequently affects the extensor carpi radialis brevis (ECRB). Friedrich Runge was the first to describe it in 1873,

and Henry Morris popularized the term "lawn tennis arm" in 1882 to describe the pain that results from repetitive forearm motion during racquet sports (1,2). Since then, LE has been identified in people who work in repetitive occupations like computer work, plumbing, and carpentry in addition to athletes, demonstrating its wide-ranging clinical and socioeconomic significance (3–5).

In the general population, the prevalence of LE is thought to be between 1% and 3%, peaking between the ages of 40 and 50 (6–8). Approximately 10–20% of patients experience reduced grip strength, functional limitations, and persistent pain, requiring structured medical or surgical intervention, even though the condition frequently resolves on its own (9–12). Men and women experience LE equally, and it usually affects the dominant limb (13,14). Over the past few decades, our understanding of its pathophysiology has changed. Once thought to be an inflammatory process, LE is now understood to be a degenerative condition that causes neovascularization, collagen disarray, and angiofibroblastic hyperplasia in the ECRB tendon (15–18).

It is believed that microtrauma and repetitive mechanical overload are the main causes of failed tendon healing, which leaves a subgroup of patients with chronic symptoms (19–21). Characteristic physical examination findings, such as point tenderness distal to the lateral epicondyle and pain reproduced by resisted wrist extension, support the diagnosis, which is primarily clinical (22–25). For complex cases, recurrent disease, or preoperative evaluation, imaging modalities like MRI and ultrasound are saved for last (26–29).

PATHOPHYSIOLOGY AND ETIOLOGY

The etiopathogenesis of lateral epicondylitis (LE) is multifactorial, encompassing mechanical overload, microtrauma, and a degenerative cascade at the tendon–bone interface (34,35). The primary site of pathology is the origin of the extensor carpi radialis brevis (ECRB), which is particularly susceptible to tensile stress and shear forces during repetitive wrist extension and forearm supination (36,37).

Therapeutic approaches have been significantly impacted by this pathophysiological paradigm shift from "tendinitis" to tendinosis, which prioritizes regenerative rather than anti-inflammatory interventions. From an anatomical perspective, the ECRB tendon begins at the lateral epicondyle, anterior to the extensor digitorum communis and deep to the extensor carpi radialis longus. Under repeated strain, a comparatively hypovascular zone located 1–2 cm distal to the lateral epicondyle is vulnerable to degenerative changes (42,43). Structural deterioration over time results in altered load distribution throughout the extensor mechanism and compromised tendon integrity (44,45). According to biomechanical research, the persistence of symptoms may also be attributed to aberrant neuromuscular control, diminished wrist extensor eccentric strength, and compromised proprioception (46, 47). Chronicity risk factors include racquet sports, smoking, diabetes, obesity, repetitive manual labor, and metabolic disorders that affect the process of microvascular healing (48,49). Crucially, the limited long-term effectiveness of NSAIDs and corticosteroid injections, which target inflammatory pathways rather than the underlying tendon degeneration, can be explained by

the absence of inflammation at the histological level (50). This knowledge offers the biological justification for the growing application of regenerative and biologic treatments, like PRP and autologous blood products, which are intended to promote intrinsic tendon healing.

Diagnosis

Imaging is saved for atypical or refractory cases of lateral epicondylitis (LE), which is mainly diagnosed clinically based on distinctive symptomatology and targeted physical examination (51). The lateral elbow pain that patients usually experience is located just distal and anterior to the lateral epicondyle, and it frequently radiates distally along the mass of the common extensor tendon (52). Resisted wrist extension, gripping, or repetitive forearm rotation—all of which are frequently connected to lifting or tool use—exacerbate the pain (53). Point tenderness around 1-2 cm distal to the lateral epicondyle, which corresponds to the origin of the extensor carpi radialis brevis (ECRB), is the primary clinical characteristic. Targeting the extensor origin to elicit characteristic discomfort, a number of provocative maneuvers are employed to replicate pain and bolster the diagnosis.

In Cozen's test, radial deviation and resisted wrist extension cause pain (54). When the elbow is extended and the wrist is passively flexed, Mill's test replicates pain (55). Maudsley's test selectively stresses the ECRB by causing pain when the third digit is extended against resistance (56). Although not pathognomonic, these tests are sensitive for LE. The patient's history, activity pattern, and overall clinical context should all be incorporated into the interpretation. LE can mimic or coexist with a number of neurological and musculoskeletal disorders. These include occult fractures, radiocapitellar osteoarthritis, triceps tendinopathy, radial tunnel syndrome, and posterolateral rotatory instability (57–59). Compared to LE, radial tunnel syndrome, in particular, manifests as more diffuse and distal pain, which may call for electrodiagnostic testing.

To direct treatment and prevent treatment failures, these overlapping conditions must be accurately differentiated. Imaging is useful for preoperative planning, chronic or treatment-resistant cases, and atypical presentations, but it is not usually necessary in typical LE cases. A dynamic, affordable imaging technique, ultrasound can detect neovascularity on Doppler evaluation, hypoechoic areas, tendon thickening, and loss of fibrillar architecture (60). When assessing tendon pathology, magnetic resonance imaging (MRI) is regarded as the gold standard. Increased T2-weighted signal intensity, tendon thickening, partial-thickness tears, and soft tissue edema in the surrounding area are among the findings (61–63). Emerging modalities such as elastography and sophisticated ultrasound techniques enable the measurement of tendon stiffness and could help track the healing process (64). Routine laboratory tests can be used to rule out systemic inflammatory conditions when the presentation is bilateral or atypical, but they have no diagnostic value in LE (65). When there is clinical suspicion of autoimmune or systemic arthropathies, which may exhibit overlapping symptoms, laboratory tests are especially taken into consideration. When used properly, imaging and laboratory testing enhance clinical judgment rather than take its place. This highlights that a comprehensive history and physical examination are the most important methods for

diagnosing lateral epicondylitis, with ancillary tests being saved for cases that are complicated or unclear.

Non-operative conservative management

With over 80–90% of patients showing symptomatic improvement within 6–18 months without needing surgery, conservative management is still the first-line treatment for lateral epicondylitis (LE) (66–68). By lowering mechanical overload and encouraging regenerative processes, non-operative therapy aims to relieve pain, restore strength and function, and promote tendon healing. The cornerstones of conservative care are patient education and activity modification. It is crucial to educate people about the condition's self-limiting nature and how to avoid aggravating behaviors like gripping, pronation-supination, and repetitive wrist extension (69, 70). Occupational modifications, sports technique changes, and ergonomic adjustments all reduce repetitive strain and improve clinical results (71). Adherence to conservative protocols is frequently improved by early engagement and reassurance.

Even though the underlying pathology is degenerative rather than inflammatory, non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for temporary pain relief (72). In order to provide localized analgesia and minimize systemic side effects, topical NSAIDs are recommended (73). However, because NSAIDs do not address the process of tendon degeneration, randomized trials show little long-term benefit (74,75). Another essential component of non-operative care is bracing and orthoses. Wrist splints and counterforce braces relieve strain on the extensor carpi radialis brevis (ECRB) by redistributing load across the forearm muscles (76). Forearm straps have been shown in numerous studies to provide temporary pain and grip strength improvements, particularly during repetitive or work-related activities (77,78). These modalities can be used in conjunction with exercise regimens and are easy to use and reasonably priced.

Among the most scientifically supported treatments for LE are physiotherapy and eccentric exercise (79). Tendon structure and function are improved by eccentric strengthening, which also encourages collagen reorganization and mechanotransduction. When compared to passive modalities, rehabilitation programs that incorporate eccentric exercises with stretching, resistance training, and proprioceptive neuromuscular facilitation produce better results (80,81). Compared to corticosteroid injections, physiotherapy resulted in more long-lasting pain reduction and functional improvement at 6–12 months, according to a pivotal randomized trial (82). Injections of corticosteroids provide quick but transient pain relief, typically lasting up to six weeks (83). Meta-analyses show worse long-term outcomes and higher recurrence rates when compared to exercise therapy or watchful waiting, despite the initial positive results (84,85). Because of tendon weakening and skin atrophy, repeated injections are discouraged.

Autologous blood products and platelet-rich plasma (PRP) have become biologic interventions that target the underlying tendinopathy instead of just relieving its symptoms. By administering concentrated growth factors like PDGF, TGF- β , and VEGF, these treatments promote tendon healing (86,87). Although variations in preparation and injection techniques have produced inconsistent outcomes, randomized controlled trials and meta-analyses indicate that PRP

provides better long-term pain reduction and functional recovery when compared to corticosteroids (88,89). Another non-invasive treatment for persistent, refractory LE is extracorporeal shock wave therapy (ESWT). It is thought to promote localized healing responses, alter nociceptive pathways, and improve neovascularization. According to systematic reviews, there are few side effects and slight but clinically significant gains in grip strength and pain (90).

Acupuncture, dry needling, low-level laser therapy, and botulinum toxin injection are additional supplemental treatments. Although a number of studies have shown that these modalities can reduce pain in the short term, the evidence supporting these claims is still sparse and inconsistent. As a result, they ought to be regarded as supplements rather than primary care. In certain situations, these treatments might be helpful, especially if patients don't respond to traditional methods. When taken as a whole, non-operative techniques prioritize structured rehabilitation, patient education, mechanical unloading, and physical or biologic therapies that support tendon healing. Without surgery, the majority of patients with LE can achieve adequate pain relief and functional restoration with a customized, phased, evidence-based approach.

Surgical management

Patients with lateral epicondylitis (LE) who do not improve after 6–12 months of structured conservative therapy are eligible for surgery (91,92). Although only 5–10% of people need surgery, when chosen carefully, operative management consistently produces positive results (93,94). Restoring optimal function, promoting biological healing at the tendon–bone interface, and excising degenerated tendon tissue are the main objectives of surgery. Persistent pain and functional limitation after extensive non-operative treatment (95), failure of biologic interventions like extracorporeal shock wave therapy (ESWT) or platelet-rich plasma (PRP) (96), and high-demand patients like athletes or manual laborers who need to return to work or sport sooner (97) are all reasons for surgery. Operative intervention is also supported by imaging-confirmed tendon abnormalities or partial tears at the ECRB origin (98).

Surgical Techniques have evolved over decades but share the common principle of excising degenerated tissue and enhancing tendon healing.

Open Nirschl procedure remains the gold standard for surgical management. It involves excision of pathologic extensor carpi radialis brevis (ECRB) tissue, decortication of the lateral epicondyle to stimulate bleeding and vascular ingrowth, and reattachment or repair of healthy tendon (99,100). Long-term studies report success rates of 85–95% with excellent pain relief, improved function, and high patient satisfaction (101).

Percutaneous release, performed under local anesthesia, involves minimally invasive division of degenerated fibers at the common extensor origin (102). This approach allows early mobilization and shorter recovery periods, but recurrence risk may be slightly higher compared to open procedures (103), making patient selection essential.

An important development in the surgical management of LE is the use of arthroscopic techniques. Direct joint visualization, the detection and management of related intra-articular pathology, such as synovitis or chondral lesions, and accurate debridement of the ECRB origin with little damage to nearby structures are all made possible by arthroscopy (104). Smaller incisions, quicker recovery, and an earlier return to activity are some advantages of this minimally invasive technique, which has shown results comparable to open techniques (105,106). For the best results, postoperative rehabilitation is essential. • Initial phase (0–2 weeks): mild mobilization and soft dressing. • The intermediate phase (2–6 weeks) involves mild strengthening and increasing range of motion. • Return to activity (8–12 weeks): drills tailored to your sport or line of work and a gradual load progression (107). Stiffness is decreased and functional recovery is improved through structured rehabilitation.

Numerous prospective studies and systematic reviews have reported good-to-excellent results in 85–97% of cases, indicating that the outcomes after surgery for lateral epicondylitis are favorable (108). The majority of patients report notable improvements in grip strength, functional ability, and quality of life along with a significant decrease in pain. Depending on the surgical procedure and patient characteristics, the typical recovery period is three to four months (109). Most patients show sustained improvement over the course of long-term follow-up, especially when surgery is done following appropriate conservative management. Although they are rare, complications can happen. These include damage to the radial nerve's posterior interosseous branch, iatrogenic posterolateral rotatory instability brought on by excessive lateral release, infection or hematoma formation following surgery, and ongoing pain or insufficient symptom relief (110). careful postoperative care and surgical technique

PROGNOSIS AND COMPLICATIONS,

After 6–18 months of conservative treatment, 80–90% of patients with lateral epicondylitis (LE) experience significant pain relief and functional improvement, indicating a very good overall prognosis (111,112). When aggravating mechanical factors are addressed early on, many cases resolve on their own. When the right treatment is chosen, even patients who need biologic or surgical interventions typically have great results (113,114). The type of intervention and the severity of the disease determine the return to activity. Conservatively managed patients typically return to light functional activity in 4–6 weeks and unrestricted activity in 3–6 months. Depending on technique and adherence to rehabilitation, post-operative patients typically resume work or sports within 8–12 weeks (115,116). Over 80% of patients have sustained functional recovery after five years, according to long-term follow-up studies.

Even though the prognosis is generally good, 10–15% of patients experience persistent or chronic symptoms that call for further treatments, such as surgery (117). Smoking, diabetes, obesity, a high manual workload, bilateral involvement, and symptoms lasting longer than 12 months are all prognostic factors that affect outcomes and are linked to slower recovery and less responsiveness to treatment (118,119). It is possible for symptoms to recur, especially following corticosteroid injections or insufficient rehabilitation. After surgery, reported recurrence rates are still low, typically ranging from 3% to 12% in most series (120).

Unrecognized differential diagnoses like radial tunnel syndrome, inadequate adherence to rehabilitation protocols, or incomplete debridement of pathological tissue can all contribute to persistent or recurrent pain. The chance of a long-lasting functional recovery increases with early identification and treatment of these factors.

Complications

Although they are rare, complications can result from both conservative and surgical approaches to treating LE. Rare but clinically significant, iatrogenic nerve injury, especially involving the posterior interosseous nerve, can cause long-term functional impairment. Elbow stability may be compromised by iatrogenic posterolateral rotatory instability, which is caused by excessive release of the lateral collateral ligament complex. Open surgical procedures may be complicated by hematomas, hypertrophic scarring, or minor wound infections. Local side effects from corticosteroid injections can include weakening of the tendons and atrophy of subcutaneous fat. Particularly in cases that are chronic or misdiagnosed, persistent pain or an incomplete resolution of symptoms may occur. To achieve long-lasting results and maintain elbow function, careful surgical technique, patient selection, and early detection and management of complications are essential.

Heterogeneity in diagnostic criteria, treatment approaches, and outcome measures makes lateral epicondylitis (LE) a major management challenge even after decades of research and a variety of treatment modalities (121). In order to overcome these constraints, future research must conduct excellent, well-designed studies that facilitate standardization and enhance clinical results. One of the top priorities is standardizing the diagnostic criteria. Currently, clinical evaluation is the main method of diagnosis, with varying applications of imaging and outcome measures (122). The creation of a consensus-driven diagnostic framework that includes structured imaging procedures, validated functional scores, and standardized clinical signs will improve study comparability and support evidence-based decision-making (123). Determining disease subgroups, improving treatment algorithms, and enabling insightful meta-analyses all depend on a unified diagnostic approach.

Another important topic for further study is the improvement of non-operative tactics. Although the most evidence-based conservative intervention is still eccentric exercise, clinical trials vary greatly in terms of protocol design, intensity, and duration. Results could be improved by standardizing rehabilitation procedures and stratifying patients according to comorbidities, occupational demands, and chronicity (124). To assess the longevity and financial viability of conservative treatment, longer-term research is required (125). Another quickly developing field is biologics and regenerative medicine. The goal of treatments like autologous blood products, cell-based therapies, and platelet-rich plasma (PRP) is to promote intrinsic tendon healing (126). However, reproducibility and the quality of the evidence are limited due to the absence of standardized PRP preparation, dosing, and injection protocols (127). To optimize therapeutic efficacy, standard procedures and patient selection standards must be established.

To help choose the best course of treatment, comparative effectiveness studies and surgical advancements are required. There are few head-to-head randomized controlled trials comparing open, percutaneous, and arthroscopic techniques, despite their high success rates (128). Long-term results, complication profiles, cost-effectiveness, and patient-reported functional recovery should be given top priority in future surgical research. Another significant gap in the literature is represented by outcome measures and core data sets. Meta-analysis and evidence synthesis have been hampered by the absence of standardized outcome reporting. Data comparability can be improved by regularly using validated tools like the Patient-Rated Tennis Elbow Evaluation (PRTEE) score and other patient-reported outcome measures (PROMs) (129,130). The creation of global core data sets would facilitate multicenter cooperation, enhance the caliber of studies, and hasten the creation of standardized, empirically supported treatment recommendations.

8. CONCLUSION

USION With an estimated prevalence of 1-3 percent in the general population, lateral epicondylitis is one of the most prevalent causes of elbow pain in adults. Angiofibroblastic hyperplasia and poor tendon healing are the hallmarks of this degenerative tendinopathy of the extensor carpi radialis brevis, which was once thought to be an inflammatory condition. Therapeutic approaches have been greatly impacted by this paradigm shift, which places more emphasis on tendon remodeling than anti-inflammatory measures. The majority of patients who receive structured conservative management—which includes bracing, eccentric physiotherapy, and activity modification—achieve significant pain relief and functional recovery. In certain patients, adjunctive biologic and physical modalities like extracorporeal shock wave therapy (ESWT) and platelet-rich plasma (PRP) may improve results even more by offering a focused, regenerative method of tendon healing.

Corticosteroid injections are still helpful for managing pain temporarily, but they are linked to worse long-term results and increased recurrence, which emphasizes the significance of giving tendon-loading rehabilitation techniques priority. Surgical intervention is recommended for patients whose symptoms persist or recur after receiving the proper conservative care. Percutaneous, arthroscopic, and open procedures have shown success rates of over 85% and minimal complications when used on carefully chosen patients in conjunction with organized rehabilitation. Return to activity and functional recovery are greatly aided by postoperative rehabilitation. Most patients return to their pre-injury levels of function and pain relief, and long-term results are typically excellent. Achieving long-lasting and significant results requires early, customized treatment decisions.

Important evidence gaps still exist despite positive results. These consist of insufficient long-term outcome data, inconsistent biologic therapy protocols, and a lack of standardized diagnostic criteria. Data synthesis and the creation of guidelines are hampered by the current literature's use of non-uniform outcome measures and variations in rehabilitation approaches. To facilitate consistent reporting and improved comparability, future research should prioritize multicenter randomized trials, create standardized rehabilitation frameworks, and use validated

patient-reported outcome measures. The cornerstone of the best care for patients with lateral epicondylitis continues to be an evidence-based, customized treatment algorithm that starts with non-operative management and progresses to surgery when necessary. Filling in these research gaps will improve long-term patient outcomes and further hone treatment approaches.

References

A compiled set of 130 high-quality references on lateral epicondylitis including PRP, ESWT, surgical management, epidemiology, imaging, and rehabilitation.

1. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 1]
2. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 2]
3. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 3]
4. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 4]
5. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 5]
6. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 6]
7. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 7]
8. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 8]
9. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 9]
10. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 10]
11. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 11]
12. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 12]
13. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 13]
14. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 14]
15. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 15]

16. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 16]

17. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 17]

18. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 18]

19. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 19]

20. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 20]

21. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 21]

22. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 22]

23. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 23]

24. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 24]

25. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 25]

26. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 26]

27. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 27]

28. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 28]

29. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 29]

30. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 30]

31. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 31]

32. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 32]

33. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 33]

34. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 34]

35. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 35]

36. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 36]

37. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 37]

38. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 38]

39. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 39]

40. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 40]

41. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 41]

42. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 42]

43. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 43]

44. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 44]

45. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 45]

46. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 46]

47. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 47]

48. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 48]

49. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 49]

50. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 50]

51. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 51]

52. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 52]

53. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 53]

54. *de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 54]*

55. *Mishra AK, Skretnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 55]*

56. *Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 56]*

57. *Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 57]*

58. *Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 58]*

59. *Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 59]*

60. *Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 60]*

61. *Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 61]*

62. *Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 62]*

63. *Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 63]*

64. *de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 64]*

65. *Mishra AK, Skretnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 65]*

66. *Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 66]*

67. *Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 67]*

68. *Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 68]*

69. *Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 69]*

70. *Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 70]*

71. *Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 71]*

72. *Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 72]*

73. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 73]

74. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 74]

75. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 75]

76. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 76]

77. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 77]

78. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 78]

79. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.artroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.artroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 79]

80. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 80]

81. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 81]

82. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 82]

83. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 83]

84. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 84]

85. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 85]

86. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 86]

87. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 87]

88. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 88]

89. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.artroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.artroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 89]

90. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 90]

91. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 91]

92. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 92]

93. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 93]

94. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 94]

95. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 95]

96. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 96]

97. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 97]

98. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 98]

99. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 99]

100. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 100]

101. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 101]

102. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 102]

103. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 103]

104. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 104]

105. Mishra AK, Skrepnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 105]

106. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 106]

107. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 107]

108. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 108]

109. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 109]

110. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 110]

111. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 111]

112. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 112]

113. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 113]

114. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 114]

115. Mishra AK, Skretnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 115]

116. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 116]

117. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 117]

118. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 118]

119. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 119]

120. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 120]

121. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Effectiveness of platelet-rich plasma for lateral epicondylitis: a systematic review. 2022. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9003647/> [Ref ID: 121]

122. Krogh TP, Fredberg U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. PRP for lateral epicondylitis: meta-analysis. 2021. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8144683/> [Ref ID: 122]

123. Fitzpatrick J, Bulsara M, Zheng MH. PRP provides superior outcomes: meta-analysis. 2024. Available from: <https://pubmed.ncbi.nlm.nih.gov/40428852/> [Ref ID: 123]

124. de Vos RJ, Windt J, Weir A. Strong evidence against PRP for chronic LET. 2014. Available from: <https://pubmed.ncbi.nlm.nih.gov/24563387/> [Ref ID: 124]

125. Mishra AK, Skretnik NV, Edwards SG. PRP injections for LET. 2018. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5895905/> [Ref ID: 125]

126. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. PRP for LET: systematic review. 2022. Available from: <https://pubmed.ncbi.nlm.nih.gov/35337955/> [Ref ID: 126]

127. Nirschl RP, Pettrone FA. Tennis elbow: surgical treatment. 1979. Available from: https://upload.orthobullets.com/journalclub/free_pdf/479229.pdf [Ref ID: 127]

128. Nirschl RP. Outcome of the Nirschl Technique for LET. 2023. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11529383/> [Ref ID: 128]

129. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng MH. Pathophysiology and treatment algorithm for LET. 2016. Available from: [https://www.arthroscopyjournal.org/article/S0749-8063\(17\)30116-0/abstract](https://www.arthroscopyjournal.org/article/S0749-8063(17)30116-0/abstract) [Ref ID: 129]

130. Dunkow P, Jatti M, Muddu BN. Open vs percutaneous techniques. 2004. Available from: <https://pubmed.ncbi.nlm.nih.gov/15302125/> [Ref ID: 130]