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Abstract:  

Electronic Health Records (EHRs) have become a cornerstone in modern healthcare, providing 

structured patient data that can significantly enhance clinical decision-making. However, the 

manual interpretation of large-scale EHR data presents challenges in efficiency and accuracy, 

necessitating the integration of advanced computational models. This study explores machine 

learning and deep learning techniques to optimise EHR-based cardiovascular disease (CVD) 

prediction, leveraging data-driven insights to enhance patient risk stratification. The 

Cardiovascular Disease Dataset from Kaggle, comprising 70,000 patient records, was utilised 

to train and evaluate three models: Random Forest, XGBoost, and Long Short-Term Memory 

(LSTM) networks. Among the three models, XGBoost demonstrated the highest predictive 

accuracy at 73.5%, making it the most effective model for CVD detection. LSTM exhibited 

the highest recall (0.81), making it well-suited for identifying high-risk patients, but it also 

generated a higher number of false positives, potentially leading to unnecessary medical 

interventions. Random Forest, a baseline model, achieved 71.2% accuracy, showing stable but 

slightly lower performance. These findings highlight the superiority of XGBoost in predictive 

accuracy, while LSTM remains useful in maximising sensitivity to disease detection. The 

results emphasise the potential of machine learning in automated cardiovascular risk 

assessment, allowing for data-driven clinical decision-making that can enhance early 

intervention strategies. The study's implications extend to EHR optimisation, AI integration in 

medical workflows, and the deployment of computational models for clinical risk management. 

Keywords: Electronic Health Records (EHRs), Machine Learning in Healthcare, Clinical 

Decision Support Systems (CDSS), Cardiovascular Disease Prediction, Random Forest, 
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I. INTRODUCTION 
Cardiovascular diseases (CVDs) are one of the top causes of global health problems since the 

World Health Organization (WHO) reports annual deaths reaching 17.9 million [1]. The 

expanding CVD prevalence requires the development of early detection systems, which help 

slow disease advancement and decrease healthcare expenses. Traditional disease diagnostic 

processes depend on clinical signs assessment, doctor expertise and handling of medical 

records, yet these approaches slow down prompt disease recognition. Hospital systems 

implementing Electronic Health Records acquire broad patient databases containing individual 

information, medical history, and test results supporting evidence-based healthcare decisions 

[2]. 

EHRs remain limited by three key obstacles: their disordered structure, comprehensive 

complexity, and vast information needs for analysis [3]. Physicians find it challenging to 

identify essential information patterns within EHR datasets, which delays medical diagnosis 

decisions and thus affects patient care results [4]. ML and DL models enable efficient analysis 

of big EHR datasets, helping medical staff identify patients at high risk [5]. After proper 
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optimisation, machine learning models improve medical diagnoses by reducing physician 

mistakes and increasing predictive healthcare capabilities. 

The research evaluates machine learning methods for designing CVD prediction systems 

utilising computer-generated models trained using structured EHR data systems. Random 

Forest, coupled with XGBoost and LSTM models, is the key method for finding the best 

clinical decision enhancement solution. XGBoost demonstrates substantial classification 

accuracy because of ensemble learning processes. At the same time, LSTM achieves its unique 

expertise in recognising sequential patterns in deep learning systems to extract long-term 

dependencies from patient histories [6]. Random Forest performs as a benchmark model so 

physicians can understand the reference point for advanced models. 

The recent popularity of EHR-based predictive modelling in healthcare analytics data cannot 

conceal the present obstacles which limit the performance of EHR-driven disease prediction 

systems [7]. The system faces three main limitations: it cannot process data immediately, and 

there are variations in feature weights while understanding medical patterns. Diagnostic 

methods for CVDs must expand their analysis to include all patient history stored in EHRs 

because doing so affects accuracy in disease progression forecasting [8]Current machine 

learning applications in healthcare mainly perform single-model assessments and omit 

systematic analyses about the effectiveness of tree-based ensemble models (Random Forest, 

XGBoost) compared to deep learning architectures (LSTM). 

A complete assessment framework for model evaluation in EHR-based CVD prediction 

remains absent from the literature, which hinders the selection process of the most powerful 

computational methods for automated risk identification and clinical decision-making systems 

(CDSS) [9]. Real-time hospital deployment of these models faces scalability limitations 

because most lack the necessary efficiency levels. The research investigates two essential 

issues: (1) it selects the top predictive model for CVD diagnosis using actual EHR information, 

and (2) it balances performance metrics to enhance practical system deployment feasibility. 

The primary purpose of this research work involves creating and testing sophisticated 

computational approaches for improving electronic health record analytics with a focus on 

cardiovascular disease detection. The study analyses structured EHR data to assess machine 

learning models which will work best in clinical practice. This analysis develops optimised 

machine learning model sequences, including Random Forest XGBoost and LSTM, for EHR 

data-based CVD risk prediction. It evaluates ensemble learning model properties (Random 

Forest XGBoost) versus deep learning model performance (LSTM) in medical decision support 

structures. The study evaluates computational-based models for enhancing healthcare 

operations through clinical risk evaluations. 

The research exhaustively evaluates Random Forest and XGBoost with LSTM for 

cardiovascular disease prediction through analysis of electronic health records. Its main 

contribution is that it reveals XGBoost as the optimal predictive model because it delivers the 

best accuracy level while fulfilling operational readiness criteria for clinical practice. The study 

demonstrates that LSTM networks present the best capacity for recall and indicate their utility 

in early risk detection protocols when false negative results need to be minimised. 

The work includes a structured analysis to determine how performance trade-offs between 

model precision, explainability, and deployment capabilities affect the system. Deep learning 

models use LSTM to explore sequential patient data effectively, yet their elevated false-

positive outcomes remain problematic for clinical use. XGBoost maintains a successful 
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equilibrium between precision and dependability, which makes it suitable as a real-time 

analysis solution for EHR processes. 

The research findings conduct crucial groundwork to merge AI technology with clinical work 

routines while enhancing CVD danger assessment techniques and improving electronic health 

record management across disease monitoring initiatives. The research outcomes serve as a 

starting point for the following generation of AI-powered clinical assistance tools to develop 

scalable data-based healthcare solutions. 

II. LITERATURE REVIEW 
Electronic Health Records and Their Role in Predictive Healthcare 

Electronic Health Records (EHRs) have become essential in contemporary healthcare because 

they can handle patient information through systematic databases. The advancement of EHRs 

has allowed healthcare providers to move beyond paper documents to digital databases, which 

has improved their clinical workflow performance [10]. EHR systems retain diverse data, 

including patient registration profiles, medical background assessments, analysis results, and 

drug and treatment progress information [11]. Implementing EHRs in healthcare brings several 

advantages to patient care because it enables doctors to see live patient data and decreases 

medical errors while enabling data-based clinical choices. EHRs present multiple difficulties 

for data analysis, while missing information, measurement errors, and systematic prejudices 

negatively impact predictive analysis performance [12]. 

EHR-based analytics faces its main challenge because missing data emerges from inconsistent 

documentation practices, patient noncompliance, and different clinical workflows. Traditional 

statistics and machine learning models require complete datasets to execute at their best, but 

missing data generates analytical biases in such circumstances [13]. Due to faulty data entry, 

inconsistent medical coding procedures, and different clinical wordings, data quality faces 

significant noise issues [14]. The noise in EHRs generates wrong model predictions, so doctors 

must conduct advanced data preprocessing and feature engineering procedures to enhance the 

quality of extracted insights [15]. The existence of biases in EHR datasets originates from 

imbalanced demographic distributions of patients along with healthcare service disparities and 

faulty diagnosis and treatment procedures [12]. Predictive models receive information that 

affects their outputs, resulting in health outcome inequality for different patient groups. 

Artificial intelligence and machine learning techniques have recently emerged as solutions to 

resolve the difficulties encountered in healthcare systems [16]. Through AI-driven models, 

medical professionals can exploit extensive EHR databases to extract disguised patterns while 

aiding healthcare professionals by conducting automated disease danger assessments that 

generate better medical choices. General ensemble learning techniques, including Random 

Forest and XGBoost, are effective in medical disease grouping and patient danger level 

determinations. [17]. The Long Short-Term Memory (LSTM) network architecture is an 

excellent framework for managing time-series patient records since it predicts how diseases 

evolve [18]Implementing AI into their EHR systems can help healthcare providers achieve 

better diagnostic precision, individualised treatment programs, and earlier interventions 

through early patient outcomes. 

Machine Learning for Cardiovascular Disease Prediction 

Worldwide, Cardiovascular diseases (CVDs) lead the list of causes of mortality and morbidity, 

thus demanding precise and expansible predictive models [19]. Numerous researchers apply 

machine learning algorithms to analyse large-scale patient records to detect essential factors 

related to cardiovascular diseases and predict disease occurrences [9, 20]. The successful 
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application of supervised learning algorithms for CVD prediction includes decision trees 

together with support vector machines (SVMs), ensemble learning methods (Random Forest, 

XGBoost) and deep learning networks (LSTM, CNN) [21, 22]. The cardiovascular risk factor 

models deliver automated findings that support professionals in identifying diseases early and 

provide proactive clinical administration [23, 24]. 

Researchers have conducted multiple investigations to determine the prediction effectiveness 

of ensemble learning models for CVD diagnosis [25, 26]. The ensemble-based decision tree 

algorithm Random Forest finds widespread use as it provides strong feature selection and high 

interpretability [27]. The system builds several decision trees and then combines their 

predictions into one decision, which enhances the classification results. The advanced gradient 

boosting algorithm XGBoost demonstrates excellent capability in managing imbalanced data 

while effectively handling combinations of features along with complex boundaries [28]. 

Model optimisation functions and overfitting prevention capabilities within XGBoost enable it 

to serve as a forceful instrument for CVD classification tasks [29]. 

The analysis of sequential EHR data becomes effective by implementing deep learning 

methods known as Long Short-Term Memory (LSTM) networks [30]. The long-term 

dependencies and temporal relationships within patient records become easily detectable by 

LSTMs since these models differ from traditional machine learning models. The analysis of 

historical medical data following blood pressure alterations and cholesterol pattern changes 

alongside glucose level movements indicates that LSTM Networks have become successful in 

cardiovascular prediction tasks [31]. The improved feature extraction from deep learning 

models comes with the drawback of limited interpretability, which makes clinical deployment 

more complicated. 

The analysis between statistical models and artificial intelligence approaches reveals that 

machine learning technology brings more excellent benefits when working with extensive 

complex data [32]. Pay has limited success due to the weak ability to discover nonlinear 

patterns between risk factors alongside multi-variate correlations, which has remained a 

constraint in cardiovascular risk evaluation for decades [33]. The automatic learning 

capabilities of machine learning models make complex dataset analysis more feasible; thus, 

they perform better in real-time prediction tasks. AI-driven cardiovascular risk assessment 

tools are increasingly used, and this shows how machine learning technology can transform 

preventive cardiology care while improving patient results [34]. 

Challenges in EHR-Based AI Modeling 

Various implementation barriers in medical practice prevent the widespread use of machine 

learning models while predicting cardiovascular diseases based on EHR data. Data imbalance 

is a significant difficulty because healthy patients outnumber diseased cases in most datasets 

[35]. The mismatch between classes in patient data leads to algorithmic preferences toward the 

majority class, which creates many incorrect disease detection outcomes [36]. Model 

performance benefits from specialised data resampling techniques that add duplicate 

observations from the minority class or generate synthetic data through SMOTE for balanced 

results [37]. 

The reliability of EHR analysis suffers when dealing with missing patient information within 

the databases. The two traditional methods for replacing missing data are mean imputation 

combined with k-nearest neighbours (KNN) imputation [38]. However, their effectiveness can 

decrease when missing data possess non-random distribution patterns. Introducing reliable 
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techniques to handle missing data becomes essential for AI models to maintain their 

generalisability and reliability. 

AI-based healthcare solutions must thoroughly explain their models to maintain their standing 

in medical applications. Random Forest models enable healthcare professionals to track how 

decisions are made. However, LSTMs and other deep learning models tend to operate as 

unexplainable black-box systems, making it hard for clinicians to follow prediction-generation 

processes [39]. Deep learning models' high opaqueness creates intense challenges regarding 

clinical confirmation, medical trust, and liability responsibilities [40]. The development of 

explainable AI (XAI) techniques involving SHAP (Shapley Additive Explanations) and LIME 

(Local Interpretable Model-agnostic Explanations) aims to supply medical professionals with 

insights concerning both model decision processes and feature importance [41, 42]. 

Implementing AI models for hospital use faces multiple barriers, including system expansion 

requirements, database system incorporation demands, and regulatory compliance [43]. 

Healthcare organisations must validate AI models through analyses of accurate patient data to 

prepare them for clinical practice deployment. Healthcare facilities must follow HIPAA 

(Health Insurance Portability and Accountability Act) and GDPR (General Data Protection 

Regulation) regulations to secure patient data and implement ethical AI systems [44]. 

Research Gap & Need for This Study 

The advancement of cardiovascular disease prediction through machine learning shows 

promise, yet scientists still need to resolve multiple research challenges [45]. Most existing 

research conducts evaluations using individual models, while research on ensemble learning 

model comparison between Random Forest and XGBoost and deep learning architecture 

performance of LSTM remains restricted [46, 47]Researchers must organise their assessments 

of different models to determine which provides the optimal combination of predictive abilities, 

clinical feasibility, and interpretability. 

Researchers have established XGBoost for its outstanding predictive accuracy, but the 

implementation of XGBoost in real-world EHR-based disease prediction needs more 

investigation [48]. People require artificial intelligence models that combine high performance 

with interpretability because that enables clinical acceptance and usability. Most research about 

AI models relies on benchmark datasets for evaluation, but there is limited investigation about 

their effectiveness with diverse patient populations [40]. 

The research fills the current study gaps through a complete evaluation of Random Forest, 

XGBoost, and LSTM model performances on actual EHR dataset information. This research 

analyses both strong and weak aspects, providing a practical understanding of how AI decision-

support systems are implemented for healthcare applications. The research outcomes from this 

work will improve both AI methods for predicting cardiovascular diseases while optimising 

the use of Electronic Health Records for better treatment processes. 
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III. METHODOLOGY 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed Methodology Diagram 

Dataset Description 

The research analyses patient records from the cardiovascular disease dataset. The 

Cardiovascular Disease dataset on Kaggle contains 70,000 patient entries with health 

parameters used for CVD prediction. The dataset comprises age information in days coupled 

with cholesterol and glucose readings, blood pressure measurements (ap_hi and ap_lo), BMI 

results, smoking status, alcohol intake, and physical activity results. The collected variables 

generate first-class data about patient health status that facilitates successful machine-learning 

modelling. The target class consists of two values: cardio, with 1 indicating cardiac disease 

presence and 0 representing its absence. 

The dataset is suitable for machine learning modelling because it includes a substantial record 

count and structured data presentation. Multiple variables within the data enable the models to 

recognise risk factors related to cardiovascular disease properly. The dataset needs 

preprocessing for missing values alongside outlier treatment and data consistency 

normalisation to achieve optimal clinical results with high model performance levels. 

Data Preprocessing 

The quality of the dataset required multiple preprocessing procedures to optimise its state. The 

feature engineering process involved changing the age variable from days to clinical standard 

years for better alignment. Outlier removal became essential for blood pressure data because 

abnormal physiological readings needed to be removed before modelling began. 

A combination of normalisation and standardisation processes helped maintain comparable 

effects between numeric components whose values would otherwise be swayed by wide-

ranging numeric features. The methodology used mean imputation to handle missing data 

points, which helped prevent model integrity issues from incomplete records. 

The preprocessing stage achieved a vital result by separating the dataset into training and 

testing parts through an 80-20% segregation. The process splits data into training parts 

representing the population and maintains a distinct test set to verify performance objectively. 

The stratified sampling technique maintained cardiovascular case distributions between 

training and testing sets to stop class imbalance from impacting model development. 
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Machine Learning Models Applied 

Random Forest (Baseline Model) 

Random Forest served as a baseline model because it has robust capabilities and interpretability 

features for classification tasks. XGBoost operates as a group of decision trees that combines 

various predictive models to enhance classification accuracy while avoiding overfitting issues. 

The model displayed an accuracy level of 71.2%, which served as a reference point. This 

approach provided equal precision and recall values, which showed a reliable yet moderately 

successful execution. This analysis using confusion matrices showed medium degrees of 

improper classifications where the model failed to correctly separate healthy patients from 

infected cases, resulting in wrong positive and negative evaluations. 

XGBoost (Best Performer) 

The XGBoost algorithm delivered optimal results through its 73.5% accuracy measurement. 

XGBoost improves the results of decision trees by enhanced iterative optimisation with a well-

designed combination of feature selection and regularisation. XGBoost maintained a balanced 

performance with a precision range from 0.72 to 0.75 and a recall range from 0.70 to 0.77. 

XGBoost proved superior to Random Forest because it excelled at complex feature analysis 

and overfitting prevention, making it perfect for clinical cardiovascular disease prediction. 

LSTM (Deep Learning Model) 

The application of Long Short-Term Memory (LSTM) networks served as a deep learning 

substitute because of their effective sequential data handling and ability to maintain long-term 

dependencies. The LSTM model managed 72% accuracy while performing better than Random 

Forest, yet performing at a lower level than XGBoost. The model achieved a 0.81 recall 

percentage, demonstrating its ability to detect cardiovascular disease risk among affected 

patients. The improved disease detection ability of the model led to more healthy patients being 

falsely classified as diseased. The exchange between model sensitivity and specificity aligns 

LSTM favourably with environments prioritising complete disease detection over other types 

of errors. 

Model Training and Evaluation Metrics 

The evaluation process for all models used four performance metrics: accuracy, precision, 

recall, and F1-score. Accuracy measured model correctness on a grand scale, but precision and 

recall specifically evaluated the number of false positives or negatives diagnosed by the model. 

The F1-score represented the precision and recall values' harmonic mean to provide an accurate 

evaluation. 

The confusion matrix evaluation enabled researchers to visualise classification mistakes by 

visualising misidentification rates while showing recurring model error patterns. According to 

Feature importance analysis in Random Forest and XGBoost, the crucial variables influencing 

cardiovascular disease predictions entailed age, blood pressure measurements, and cholesterol 

levels. 

XGBoost proved to be the best CVD prediction model because it attained the ideal combination 

of accuracy, recall, and interpretability sufficient for use with CDSS. The analysis creates a 

solid basis for deploying AI-directed models that advance cardiovascular risk evaluation within 

electronic medical records. 
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IV. RESULT 
 

 

 

 

 

 

Figure 2: Distribution of Cardiovascular Disease Cases 

Figure 2 demonstrates the patient count split between those with cardiovascular disease (1) and 

those who do not have the condition (0). The dataset exhibits a balanced distribution of both 

groups because their numbers are nearly equal, which avoids class imbalance problems for 

machine learning models. Model performance reliability depends on balanced datasets since 

they eliminate class-biased predictions crucial for clinical prediction accuracy. 

 

 

 

 

 

 

Figure 3: Correlation Heatmap 

Figure 3, a correlation heatmap from the dataset, shows the relationships between medical 

features. The predictive power of cardiovascular disease derives from the moderate correlation 

between age, cholesterol, and systolic blood pressure (ap_hi). The features height and alcohol 

consumption (alco) show insufficient relationships compared to other variables. Knowing how 

features relate to each other allows better feature selection for predictive modelling models to 

become more accurate. 

 

 

 

 

 

 

Figure 4: Age vs. Systolic Blood Pressure by Cardiovascular Disease 
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Figure 4 shows how systolic blood pressure changes as patients age within two groups: those 

with cardiovascular disease and those without. The statistical information shows elevated 

systolic blood pressure as a marker that increases patients' likelihood of cardiovascular disease. 

Several points exist that show data irregularities along with atypical medical conditions. 

Medical practitioners benefit from this analytical process to detect patients who face high risks 

early on. 

 

 

 

 

 

 

Figure 5: Age vs. Cholesterol Levels by Cardiovascular Disease 

Figure 5 displays how cholesterol level distributions change according to patient age groups 

between cardiovascular disease groups and those without disease. These cholesterol 

measurement categories exist in three specific numerical categories starting from 1 through 3. 

Cholesterol levels of 2 and 3 appear more often in patients diagnosed with cardiovascular 

disease, thus demonstrating cholesterol control's relevance in minimising disease risk. 

 

 

 

 

 

 

Figure 6: Height vs. Weight by Cardiovascular Disease 

Figure 6 analyses height-weight data points from people who received cardiovascular disease 

diagnoses. Patients who weigh more frequently form visible clusters that indicate elevated 

cardiovascular disease risk, demonstrating that obesity functions as a risk factor. 

Cardiovascular health assessments should consider weight-related factors such as BMI because 

height does not demonstrate meaningful correlations for predicting heart disease risk. 

 

 

 

 

Figure 7: Random Forest Model Performance 
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According to the results of the Random Forest classification report, the model achieves 71% 

accuracy while exhibiting equal precision (0.71–0.72) and recall scores (0.70–0.72) for each 

class (Figure 7). The model shows comparable success rates when predicting medical 

conditions in patients regardless of their disease status, demonstrating its capability to apply to 

various cases. The model requires additional modifications to improve its identification of risky 

patient cases. 

 

Figure 8: Confusion Matrix - Random Forest 

The Random Forest model correctly identified 5913 patients between the non-diseased and 

diseased groups but simultaneously misdiagnosed 3921 subjects as non-diseased when they 

had the disease and as diseased for 2088 non-diseased patients in the data (Figure 8). The model 

demonstrates decent discrimination between incorrect positives and negatives, but continued 

enhancement could produce better outcomes during medical decisions. 

 

Figure 9: XGBoost Model Performance 

Based on the results, the XGBoost model delivers 74% accuracy, demonstrating superior 

effectiveness than Random Forest. The higher precision level of 0.72–0.75 and the recall level 

of 0.70–0.77 in the XGBoost model leads to better cardiovascular disease prediction accuracy 

for patients and healthy individuals (Figure 9). The complex interactions within the dataset 

make XGBoost an appropriate tool for data processing. 
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Figure 10: Confusion Matrix – XGBoost 

 The XGBoost confusion matrix shows a correct diagnosis of 5,393 non-diseased 

patients and 4,907 disease-positive cases, but 1,595 incorrect projections of non-diseased cases 

to disease-positive and 2,105 disease-positive cases into the non-disease group (Figure 10). 

Compared to Random Forest, XGBoost produces fewer incorrect optimistic predictions, 

thereby improving its ability to identify healthy patients correctly. 

 

Figure 11: LSTM Model Performance 

 The LSTM deep learning model generates performance at 72%, which positions it 

between Random Forest and XGBoost results. The accuracy of detecting healthy patients is 

0.77, but the model shows low identification ability at 0.62 for disease cases (Figure 11). 

XGBoost demonstrates flawless performance in disease detection, with its maximum recall rate 

of 0.81, thus enabling it to identify cardiovascular risks effectively. 

 

 

 

 

 

 

 

Figure 12: Confusion Matrix – LSTM 
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Based on the LSTM confusion matrix results, 5695 correctly diagnosed diseased patients are 

the highest among all examined models, thus producing maximum sensitivity for disease 

recognition. XGBoost suffers from a critical shortcoming because it incorrectly identified 2640 

healthy patients as diseased, which introduces substantial risks for medical diagnostic 

procedures (Figure 12). 

 

Figure 13: Model Accuracy Comparison 

According to tabulated results, XGBoost delivers the best model accuracy at 73.5%, while 

LSTM reaches 71.7% accuracy, and Random Forest achieves 71.2% accuracy. The XGBoost 

algorithm is the leading model in this dataset since it establishes an ideal balance between 

precision and recall rates (Figure 13). 

 

Figure 14: Accuracy Scores  

A comparison bar chart demonstrates that XGBoost displays higher classification accuracy 

than Random Forest and LSTM. XGBoost is the top selection for clinical use because of its 

superior predictive abilities, making decisions more reliable (Figure 14). 

V. DISCUSSION 
The study results show that machine learning and deep learning algorithms efficiently predict 

cardiovascular disease (CVD) using electronic health records (EHRs). The findings show that 

XGBoost resulted in the most optimal performance, competing with the other models by 

producing 73.5% accuracy with the best precision and recall measurements ratio. This 

performance shows that XGBoost can work with non-linear aspects within the patient's health 

and, therefore, can be used in a real-time clinical decision support system (CDSS). 

The Random Forest model applied as the base model, showed moderate performance with an 

accuracy of 71.2%, which indicates that it had an acceptable level of both precision-recall. 

However, it has a slightly lower testing classification accuracy than XGBoost, which suggests 

that other advanced ensemble algorithms are superior in providing cardio risk estimates for 

generalisation. This study supported the idea that random forest is easy to interpret, and through 

feature-important analysis, it showed that the main indicators that contributed to CVD were 

age, blood pressure, and cholesterol level. Despite this, the model's accuracy is not optimum 
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for clinical purposes because the confusion matrix shows high misclassification rates, 

suggesting the need for improvement. 

However, the LSTM deep learning model has the advantage of higher recall (0.81) and 

specificity (0.69) because, despite the fairly good accuracy of 72%, it is significantly better at 

picking out high-risk patients. This is very applicable in medically related perspectives, 

especially where false values must be kept at unacceptable levels to avoid missing out on 

cardiovascular diseases. However, the higher false-positive rate of the model creates issues in 

practice since genuinely sick patients are categorised as healthy and undergo avoidable tests. 

This trade-off between sensitivity and specificity is crucial, especially because applications of 

this model are most often in medicine, and accurate diagnosis must be balanced against timely 

diagnosis, which means early discovery of the disease. 

Among the considerations derived from the confusion matrices, it is significant to highlight 

that XGBoost outperforms the Random Forest and LSTM by decreasing false positives and 

false negatives. This implies that gradient-boosting algorithms are efficient in structured EHR 

datasets to identify the hidden patterns in the clinical data that are important in accurately 

diagnosing diseases. Moreover, the feature importance analysis revealed the results of the 

hypertension (𝑎𝑝ℎ𝑖 and 𝑎𝑝𝑙𝑜), cholesterol, glucose, and BMI were the most effective predictors 

of cardiovascular disease. These findings are justified through literature as proposed in clinical 

knowledge, which enhances the general acceptability of the models. 

Compared with deep learning models like LSTM, XGBoost has excellent interpretability, 

which is crucial for medical AI. Decision makers need to have faith in the algorithms to accept 

AI decisions. Although LSTM has great capabilities regarding sequential learning, it remains 

opaque and, therefore, cannot be directly applied in practice without the integration of 

explainability methods such as SHAP or attention. 

In terms of deployment, XGBoost is the most realistic model to work with because of its 

proficiency, scalability, and explainability features. In fact, due to LSTM's high recall values, 

LSTM can serve as an effective means for early screening and subsequent prolonged 

delineation of the patient's condition, especially useful during the analysis of patient records 

during their stay in the hospital. As for future work, it would be advisable to implement a 

combination of XGBoost and LSTM to achieve better performance because of its higher 

accuracy and sensitivity to cardiovascular risk prediction. 

VI. CONCLUSION 
The results from this study show how it is possible to use structured Electronic Health Record 

(EHR) data to accurately predict CVD using machine learning and deep learning models. While 

evaluating the models, it was found that XGBoost was the best model and performed ahead of 

Random Forest and LSTM in terms of accuracy (73.5%) and precision-recall curve. This makes 

it the best model for real-world application, which can be implemented in clinical practice in 

cardiovascular risk assessment apps. 

The standard deviation in the random forest model was slightly lower than the precision rate 

of 71.2%, which made it less preferable than the XGBoost model. Nevertheless, it can be 

considered beneficial when it comes to interpretability since it allows clinicians to know the 

factors most significant in CVD risk prediction. This transparency is paramount, especially 

because AI systems will play a significant role in the future of healthcare. 

Even though the LSTM model yielded slightly less accuracy than the XGBoost model, it 

offered a high recall of 0.81, which would be beneficial in diagnosing high-risk patients. This 
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study shows that deep learning can perform medical diagnosis and has good potential, 

especially where reducing false negatives is important. However, LSTM has a comparatively 

higher false-positive percentage, increasing the chances that some patients are misclassified 

and subsequently receive treatments they do not need. This trade-off further emphasises the 

fact that the current configuration of the model system should be optimised to achieve a low 

false alarm rate while maintaining high sensitivity. 

Based on these studies, some important suggestions have been made for further research and 

field implementation. First, XGBoost should be used for clinical decision support systems as 

it provides a high level of accuracy and good interpretability, and when compared to usual 

decision trees, it is considered less fluctuating. Such characteristics make the model easily 

scalable for hospital-based AI systems due to its high performance in managing large datasets 

from EHRs. Nonetheless, the generalizability of the tool to various patient populations, as well 

as its validity, should also be tested. 

Second, LSTM should be investigated for continual health assessment because it is especially 

effective at analysing data in a temporal structure. However, future studies should address its 

high false positive rate. This could be done using advanced deep learning models such as 

LSTM with attention or incorporating explainability in AI. Also, utilising domain knowledge 

in deep learning architectures could help improve the models’ explainability, which is essential 

in clinical applications. 

Thirdly, the explainability of artificial intelligence is still an essential consideration when 

adopting these technologies in the healthcare sector. The XGBoost model already offers some 

level of feature importance, but LSTM models should be explained with other methods like 

SHAP, LIME, or attention maps. The study should focus on designing a more explanatory 

cardiovascular risk prediction model built by artificial intelligence to enhance and complement 

clinicians’ knowledge and practice. 

Fourth, clinical validation of AI models remains necessary after the corresponding AI 

applications have been launched in clinical and hospital environments. However, this research 

has limitations, and AI models must be validated in real-life subjects to analyse their 

effectiveness in real time. Further research should seek partnerships with healthcare 

organisations to implement these models within EHR software to support AI-facilitated risk 

assessment in real-time. 

Therefore, future research should investigate integrating XGBoost and LSTM approaches. For 

the first stage, XGBoost could be applied for the basic categorisation of patients, while LSTM 

could be used for constant patient observation to enhance the accuracy of diagnosis and 

recognition of further cardiovascular diseases. It can offer great potential to build an efficient 

AI-based clinical decision-support system, potentially decreasing diagnostic mistakes and 

increasing patient success rates. 
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