Evaluation of Anti-Oxidant Potential and Novel Synergism Effect of Citrullus colocynthis against MDR pathogenic Strains

Authors

  • Hafiza Bisma Nadeem Institute of Allied Health Sciences, School of Medical Laboratory Technology, Minhaj University Lahore, Author
  • Hafiz Khawar Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Author
  • Saira Jabeen Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Author
  • Maryam Salah ud Din Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Author
  • Mian Zahid sarfraz Department of Pathology, Allama Iqbal Medical College Lahore, Author
  • Saba Abbas Institute of Allied Health Sciences, School of Medical Laboratory Technology, Minhaj University Lahore, Author
  • Hira Shafique Awan Department of Microbiology, University of Central Punjab Lahore Author

Abstract

 Citrullus colocynthis belong to family Cucurbitaceae is a medicinal plant traditionally used for the treatment of various diseases [1][2] including diabetes, bacterial infections, constipation and many other diseases. Various parts of plant individually produced anti-microbial and anti-oxidant potential. This is the first study reporting 1. The Novel synergism effect of Citrullus colocynthis, Fruit, Seed and root extract against MDR pathogenic strains in the least concentration of various organic solvents extracted compounds (first study reporting anti-microbial activity of Butanol extracted compounds) 2. Inhibitory concentration (IC50) of these compounds against MDR 3. Novel Synergism of C. colocynthis fruit, seed and root showing anti-oxidant potential. According to findings, Citrullus colocynthis can be used as medicinal plant as its various compounds isolated through organic solvents showed antimicrobial activity against MDR-pathogens. Maximum activity against MDR pathogens of Pseudomonas Aeurignosa, Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Stenotrophomonas maltophilia, Salmonella typhi, Salmonella paratyphi, Acinetobacter baumanni and Enterococcus faecalis was shown by Butanol extract followed by Chloroform, Acetone, Ethanol, Hexane and DMSO extract. The plant also showed 92% anti-oxidant potential in the least concentration of 93µg/mL. 

Downloads

Download data is not yet available.

References

Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal

plants. Journal of ethnopharmacology, 77(2-3), 151-157.

Abd El-Ghani, M. M. (2016). Traditional medicinal plants of Nigeria: an overview. Agriculture and

Biology Journal of North America, 7(5), 220-247.

MALEK, T., Chaudhari, K., & Maitrey, B. (2022). A REVIEW ON REPORTED

ETHANOMEDICINAL PLANTS OF ARAVALLI DISTRICT, GUJARAT, INDIA. VIDYA-A

JOURNAL OF GUJARAT UNIVERSITY, 1(2), 76-79.

Hao, D. C., & Xiao, P. G. (2015). Genomics and evolution in traditional medicinal plants: road to a

healthier life. Evolutionary Bioinformatics, 11, EBO-S31326.

Alqahtani, A. S., Ullah, R., & Shahat, A. A. (2022). Bioactive constituents and toxicological evaluation

of selected antidiabetic medicinal plants of Saudi Arabia. Evidence-Based Complementary and

Alternative Medicine, 2022.

Anup, K., Mohan, K., Suraj, S., Sandip, F., Bhushan, F., & Prashant, W. (2010). Antimicrobial activity

of some important medicinal plants of India against some plant and human pathogens. Research

Journal of Pharmacy and Technology, 3(3), 924-926.

Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International journal of herbal

medicine, 4(4), 59-64.

Dar, R. A., Shahnawaz, M., & Qazi, P. H. (2017). General overview of medicinal plants: A review. The

journal of phytopharmacology, 6(6), 349-351.

Dar, R. A., Shahnawaz, M., & Qazi, P. H. (2017). General overview of medicinal plants: A review. The

journal of phytopharmacology, 6(6), 349-351.

Mustapa, A. N., Martin, Á., Mato, R. B., & Cocero, M. J. (2015). Extraction of phytocompounds from

the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical

carbon dioxide extraction. Industrial Crops and Products, 74, 83-94.

Maatooq, G. T., El-Sharkawy, S. H., Afifi, M. S., & Rosazza, J. P. (1997).

Cphydroxybenzoylglycoflavones from Citrullus colocynthis. Phytochemistry, 44(1), 187-190.

Levi, A., Thomas, C. E., Keinath, A. P., & Wehner, T. C. (2001). Genetic diversity among watermelon

(Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution, 48,

-566.

Kumar, S., Kumar, D., Saroha, K., Singh, N., & Vashishta, B. (2008). Antioxidant and free radical

scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta

Pharmaceutica, 58(2), 215-220.

Bhasin, A., Singh, S., & Garg, R. (2020). Nutritional and medical importance of Citrullus colocynthisA review. Plant Archives, 20(2), 3400-3406.

Marzouk, B., Marzouk, Z., Décor, R., Edziri, H., Haloui, E., Fenina, N., & Aouni, M. (2009).

Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine.

Journal of ethnopharmacology, 125(2), 344-349.

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and

therapeutics, 40(4), 277.

Barghamdi, B., Ghorat, F., Asadollahi, K., Sayehmiri, K., Peyghambari, R., & Abangah, G. (2016).

Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study.

Journal of pharmacy & bioallied sciences, 8(2), 130.

Rabizadeh, F., Mirian, M. S., Doosti, R., Kiani-Anbouhi, R., & Eftekhari, E. (2022). Phytochemical

Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional

Persian Medicine. Evidence-Based Complementary and Alternative Medicine, 2022.

Achilonu, M., Shale, K., Arthur, G., Naidoo, K., & Mbatha, M. (2018). Phytochemical benefits of

agroresidues as alternative nutritive dietary resource for pig and poultry farming. Journal of Chemistry,

, 1-15.

Mariod, A. A., & Jarret, R. L. (2022). Antioxidant, antimicrobial, and antidiabetic activities of Citrullus

colocynthis seed oil. In Multiple Biological Activities of Unconventional Seed Oils (pp. 139-146).

Academic Press.

Eidi, S., Azadi, H. G., Rahbar, N., & Mehmannavaz, H. R. (2015). Evaluation of antifungal activity of

hydroalcoholic extracts of Citrullus colocynthis fruit. Journal of herbal medicine, 5(1), 36-40.

da Silva, J. A. T., & Hussain, A. I. (2017). Citrullus colocynthis (L.) Schrad.(colocynth):

Biotechnological perspectives. Emirates Journal of Food and Agriculture, 83-90.

Dabe, N. E., & Kefale, A. T. (2017). Antidiabetic effects of Artemisia species: a systematic review.

Ancient science of life, 36(4), 175.

Finch, C. E. (2005). Developmental origins of aging in brain and blood vessels: an overview.

Neurobiology of aging, 26(3), 281-291.

Duke, J. A. (2008). Duke's handbook of medicinal plants of Latin America. CRC press.

Alhawiti, N. M. (2018). Antiplatelets and profibrinolytic activity of Citrullus colocynthis in control

and high-fat diet-induced obese rats: mechanisms of action. Archives of physiology and biochemistry,

(2), 156-166.

Ballotin, V. R., Bigarella, L. G., de Mello Brandão, A. B., Balbinot, R. A., Balbinot, S. S., & Soldera,

J. (2021). Herb-induced liver injury: Systematic review and meta-analysis. World Journal of Clinical

Cases, 9(20), 5490.

Sanadgol, N., Najafi, S., Ghasemi, L. V., Motalleb, G., & Estakhr, J. (2011). A study of the inhibitory

effects of Citrullus colocynthis (CCT) using hydro-alcoholic extract on the expression of cytokines:

TNF-α and IL-6 in high fat diet-fed mice towards a cure for diabetes mellitus. Journal of

pharmacognosy and phytotherapy, 3(6), 81-88.

Pashmforosh, M., Rajabi Vardanjani, H., Rajabi Vardanjani, H., Pashmforosh, M., & Khodayar, M. J.

(2018). Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in

rats. Medicina, 54(4), 51.

Tannin-Spitz, T., Grossman, S., Dovrat, S., Gottlieb, H. E., & Bergman, M. (2007). Growth inhibitory

activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.

Biochemical pharmacology, 73(1), 56-67.

Rizvi, T. S., Khan, A. L., Ali, L., Al-Mawali, N., Mabood, F., Hussain, J., ... & Al-Harrasi, A. (2018).

In vitro oxidative stress regulatory potential of Citrullus colocynthis and Tephrosia apollinea. Acta

Pharmaceutica, 68(2), 235-242.

Gupta, S. C., Tripathi, T., Paswan, S. K., Agarwal, A. G., Rao, C. V., & Sidhu, O. P. (2018).

Phytochemical investigation, antioxidant and wound healing activities of Citrullus colocynthis (bitter

apple). Asian Pacific Journal of Tropical Biomedicine, 8(8), 418.

Mariod, A. A., & Jarret, R. L. (2022). Antioxidant, antimicrobial, and antidiabetic activities of Citrullus

colocynthis seed oil. In Multiple Biological Activities of Unconventional Seed Oils (pp.

-146). Academic Press.

Afzal, M., Khan, A. S., Zeshan, B., Riaz, M., Ejaz, U., Saleem, A., ... & Ahmed, N. (2023).

Characterization of bioactive compounds and novel proteins derived from promising source citrullus

colocynthis along with in-vitro and in-vivo activities. Molecules, 28(4), 1743.

Javadzadeh, H. R., Davoudi, A., Davoudi, F., Valizadegan, G., Goodarzi, H., Mahmoodi, S., ... &

Faraji, M. (2013). Citrullus colocynthis as the Cause of Acute Rectorrhagia. Case reports in emergency

medicine, 2013.

Al-Nablsi, S., El-Keblawy, A., Ali, M. A., Mosa, K. A., Hamoda, A. M., Shanableh, A., ... & Soliman,

S. S. (2022). Phenolic contents and antioxidant activity of Citrullus Colocynthis fruits, growing in the

hot arid desert of the UAE, influenced by the fruit parts, accessions, and seasons of fruit collection.

Antioxidants, 11(4), 656.

Rizvi, T. S., Mabood, F., Ali, L., Al‐Broumi, M., Al Rabani, H. K., Hussain, J., ... & Al‐Harrasi, A.

(2018). Application of NIR spectroscopy coupled with PLS regression for quantification of total

polyphenol contents from the fruit and aerial parts of Citrullus colocynthis. Phytochemical Analysis,

(1), 16-22.

Lemos, M. F., Lemos, M. F., Pacheco, H. P., Guimarães, A. C., Fronza, M., Endringer, D. C., & Scherer,

R. (2017). Seasonal variation affects the composition and antibacterial and antioxidant activities of

Thymus vulgaris. Industrial Crops and Products, 95, 543-548.

Birgani, G. A., Ahangarpour, A., Khorsandi, L., & Moghaddam, H. F. (2018). Anti-diabetic effect of

betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Brazilian Journal

of Pharmaceutical Sciences, 54.

Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal

plants having insulin mimetic property. Asian Pacific journal of tropical biomedicine, 2(4), 320-330.

Chauhan, A., Semwal, D. K., Mishra, S. P., & Semwal, R. B. (2015). Ayurvedic research and

methodology: Present status and future strategies. Ayu, 36(4), 364.

Shaikh, S. I., Nagarekha, D., Hegade, G., & Marutheesh, M. (2016). Postoperative nausea and

vomiting: A simple yet complex problem. Anesthesia, essays and researches, 10(3), 388.

Koche, D., Shirsat, R., & Kawale, M. A. H. E. S. H. (2016). An overerview of major classes of

phytochemicals: their types and role in disease prevention. Hislopia Journal, 9(1/2), 0976-2124.

Mohiuddin, A. K. (2019). A brief review of traditional plants as sources of pharmacological interests.

Open Journal of Plant Science, 4(1), 1-8.

Kafshgari, H. S., Yazdanian, M., Ranjbar, R., Tahmasebi, E., Mirsaeed, S. R. G., Tebyanian, H., ... &

Goli, H. R. (2019). The effect of Citrullus colocynthis extracts on Streptococcus mutans, Candida

albicans, normal gingival fibroblast and breast cancer cells. Journal of Biological ResearchBollettino

della Società Italiana di Biologia Sperimentale, 92(1).

Abdulridha, M. K., Al-Marzoqi, A. H., & Ghasemian, A. (2020). The anticancer efficiency of Citrullus

colocynthis toward the colorectal cancer therapy. Journal of Gastrointestinal Cancer, 51, 439-444

Lahfa, F. B., Azzi, R., Mezouar, D., & Djaziri, R. (2017). Hypoglycemic effect of Citrullus colocynthis

extracts. Phytothérapie, 15(2), 50-56.

Al‐Hwaiti, M. S., Alsbou, E. M., Abu Sheikha, G., Bakchiche, B., Pham, T. H., Thomas, R. H., &

Bardaweel, S. K. (2021). Evaluation of the anticancer activity and fatty acids composition of

“Handal”(Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Science &

Nutrition, 9(1), 282-289.

Rajizadeh, M. A., Aminizadeh, A. H., Esmaeilpour, K., Bejeshk, M. A., Sadeghi, A., & Salimi, F.

(2023). Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like

behaviors in STZ-induced diabetic rats. International Journal of Neuroscience, 133(4), 343-355

Rahbar, A. R., & Nabipour, I. (2010). The hypolipidemic effect of Citrullus colocynthis on patients

with hyperlipidemia. Pakistan journal of biological sciences: PJBS, 13(24), 1202-1207.

Daradka, H., Almasad, M. M., WSh, Q., El-Banna, N. M., & Samara, O. H. (2007). Hypolipidaemic

effects of Citrullus colocynthis L. in rabbits. Pakistan journal of biological sciences: PJBS, 10(16),

-2771.

Jeon, J. H., & Lee, H. S. (2014). Biofunctional constituent isolated from Citrullus colocynthis fruits

and structure–activity relationships of its analogues show acaricidal and insecticidal efficacy. Journal

of agricultural and food chemistry, 62(34), 8663-8667.

Rahuman, A. A., Venkatesan, P., & Gopalakrishnan, G. (2008). Mosquito larvicidal activity of oleic

and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitology research, 103, 1383-

Chawech, R., Njeh, F., Hamed, N., Damak, M., Ayadi, A., Hammami, H., & Mezghani‐Jarraya, R.

(2017). A study of the molluscicidal and larvicidal activities of Citrullus colocynthis (L.) leaf extract

and its main cucurbitacins against the mollusc Galba truncatula, intermediate host of Fasciola hepatica.

Pest management science, 73(7), 1473-1477.

Meybodi, M. S. K. (2020). A review on pharmacological activities of Citrullus colocynthis (L.) Schrad.

Asian J. Res. Rep. Endocrinol, 25, 25-34.

da Silva, J. A. T., & Hussain, A. I. (2017). Citrullus colocynthis (L.) Schrad.(colocynth):

Biotechnological perspectives. Emirates Journal of Food and Agriculture, 83-90.

Amamou, F., Bouafia, M., Chabane-Sari, D., Meziane, R. K., & Nani, A. (2011). Citrullus colocynthis:

a desert plant native in Algeria, effects of fixed oil on blood homeostasis in Wistar rat. Journal of

Natural Product and Plant Resources, 1, 1-7.

Savithramma, N., Sulochana, C., & Rao, K. N. (2007). Ethnobotanical survey of plants used to treat

asthma in Andhra Pradesh, India. Journal of Ethnopharmacology, 113(1), 54-61.

Bouldin, A. S., Smith, M. C., Garner, D. D., Szeinbach, S. L., Frate, D. A., & Croom, E. M. (1999).

Pharmacy and herbal medicine in the US. Social science & medicine, 49(2), 279-289.

Lavie, D., Willner, D., & Merenlender, Z. (1964). Constituents of Citrullus colocynthis (L.) Schrad.

Phytochemistry, 3(1), 51-56.

Meybodi, M. S. K. (2020). A review on pharmacological activities of Citrullus colocynthis (L.) Schrad.

Asian J. Res. Rep. Endocrinol, 25, 25-34.

Rajizadeh, M. A., Aminizadeh, A. H., Esmaeilpour, K., Bejeshk, M. A., Sadeghi, A., & Salimi, F.

(2023). Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like

behaviors in STZ-induced diabetic rats. International Journal of Neuroscience, 133(4), 343-355.

Mohiuddin, A. K. (2019). A brief review of traditional plants as sources of pharmacological interests.

Open Journal of Plant Science, 4(1), 1-8.

Roy, R. K., Thakur, M., & Dixit, V. K. (2007). Effect of citrullus colocynthis. On hair growth in albino

rats. Pharmaceutical biology, 45(10), 739-744.

Chaturvedi, M., Mali, P. C., & Ansari, A. S. (2003). Induction of reversible antifertility with a crude

ethanol extract of Citrullus colocynthis Schrad fruit in male rats. Pharmacology, 68(1), 38-48.

Kumar, D., Kumar, A., & Prakash, O. (2012). Potential antifertility agents from plants: A

comprehensive review. Journal of Ethnopharmacology, 140(1), 1-32.

Sharma, A., Sharma, P., Chaturvedi, M., & Joshi, S. C. (2014). Effect of Citrullus colocynthis on

function of cauda epididymis and accessory reproductive organs of male rats. World Journal of

Pharmaceutical Research, 3(2), 2406-2419.

Vivas, R., Barbosa, A. A. T., Dolabela, S. S., & Jain, S. (2019). Multidrug-resistant bacteria and

alternative methods to control them: an overview. Microbial Drug Resistance, 25(6), 890-908.

Medina, E., & Pieper, D. H. (2016). Tackling threats and future problems of multidrug-resistant

bacteria. How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives,

-33.

Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria:

a study. Journal of pathogens, 2016.

Sharma, A. (2011). Antimicrobial resistance: no action today, no cure tomorrow. Indian Journal of

Medical Microbiology, 29(2), 91.

Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797), 762-767.

Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas

aeruginosa high-risk clones. Drug Resistance Updates, 21, 41-59.

Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas

aeruginosa infections: an update. Drugs, 81(18), 2117-2131.

Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in microbiology, 2, 65.

Breidenstein, E. B., de la Fuente-Núñez, C., & Hancock, R. E. (2011). Pseudomonas aeruginosa: all

roads lead to resistance. Trends in microbiology, 19(8), 419-426.

Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas

aeruginosa high-risk clones. Drug Resistance Updates, 21, 41-59.

Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., ... & Grau, S. (2019).

Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas

aeruginosa infections. Clinical microbiology reviews, 32(4), e00031-19.

Hua, X., Liu, L., Fang, Y., Shi, Q., Li, X., Chen, Q., ... & Yu, Y. (2017). Colistin resistance in

Acinetobacter baumannii MDR-ZJ06 revealed by a multiomics approach. Frontiers in cellular and

infection microbiology, 7, 45.

Ni, W., Han, Y., Zhao, J., Wei, C., Cui, J., Wang, R., & Liu, Y. (2016). Tigecycline treatment experience

against multidrug-resistant Acinetobacter baumannii infections: a systematic review and metaanalysis. International journal of antimicrobial agents, 47(2), 107-116.

Adegoke, A. A., Stenström, T. A., & Okoh, A. I. (2017). Stenotrophomonas maltophilia as an emerging

ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Frontiers in microbiology, 8,

Chang, Y. T., Lin, C. Y., Chen, Y. H., & Hsueh, P. R. (2015). Update on infections caused by

Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic

options. Frontiers in microbiology, 6, 893.

Nguyen, T. H. T., Nguyen, N. A. T., Nguyen, H. D., Nguyen, T. T. H., Le, M. H., Pham, M. Q., ... &

Pham, H. N. (2023). Plant Secondary Metabolites on Efflux-Mediated Antibiotic Resistant

Stenotrophomonas Maltophilia: Potential of Herbal-Derived Efflux Pump

Inhibitors. Antibiotics, 12(2), 421.

Dadashi, M., Hajikhani, B., Nazarinejad, N., Nourisepehr, N., Yazdani, S., Hashemi, A., ... & Sameni,

F. (2023). Global prevalence and distribution of antibiotic resistance among clinical isolates of

Stenotrophomonas maltophilia: a systematic review and meta-analysis. Journal of Global

Antimicrobial Resistance.

Kumar, G., & Tudu, A. K. (2023). Tackling multidrug-resistant Staphylococcus aureus by natural

products and their analogues acting as NorA efflux pump inhibitors. Bioorganic & Medicinal

Chemistry, 117187.

Kime, L., Waring, T., Mohamad, M., Mann, B. F., & O’Neill, A. J. (2023). Resistance to antibacterial

antifolates in multidrug-resistant Staphylococcus aureus: prevalence estimates and genetic basis.

Journal of Antimicrobial Chemotherapy, 78(5), 1201-1210.

Chand, U., Priyambada, P., & Kushawaha, P. K. (2023). Staphylococcus aureus vaccine strategy:

promise and challenges. Microbiological Research, 127362.

Al-Trad, E. A. I., Che Hamzah, A. M., Puah, S. M., Chua, K. H., Hanifah, M. Z., Ayub, Q., ... & Yeo,

C. C. (2023). Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant MethicillinResistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens, 12(3),

Hussain, T., Shami, A., Rafiq, N., Khan, S., Kabir, M., Khan, N. U., ... & Usman, T. (2023).

Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin-and

Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics, 12(4), 673.

Aljasir, S. F., & D'Amico, D. J. (2023). Anti-infective properties of the protective culture Hafnia alvei

B16 in food and intestinal models against multi-drug resistant Salmonella. Food Microbiology, 110,

Mina, S. A., Hasan, M. Z., Hossain, A. Z., Barua, A., Mirjada, M. R., & Chowdhury, A. M. A. (2023).

The Prevalence of Multi-Drug Resistant Salmonella typhi Isolated From Blood Sample. Microbiology

Insights, 16, 11786361221150760.

Chou, S. H., Wan, T. W., Shiau, C. W., Chen, L. H., Lin, H. C., & Chiu, H. C. (2023). Repurposing the

Tyrosine Kinase Inhibitor Nilotinib for Use Against Intracellular Multidrug-Resistant Salmonella

Typhimurium. Journal of Microbiology, Immunology and Infection.

Igbinosa, I. H., Amolo, C. N., Beshiru, A., Akinnibosun, O., Ogofure, A. G., El-Ashker, M., ... &

Igbinosa, E. O. (2023). Identification and characterization of MDR virulent Salmonella spp isolated

from smallholder poultry production environment in Edo and Delta States, Nigeria. Plos one, 18(2),

e0281329.

García, P., Moscoso, M., Fuentes-Valverde, V., Rodicio, M. R., Herrera-León, S., & Bou, G. (2023). A

highly-safe live auxotrophic vaccine protecting against disease caused by non-typhoidal Salmonella

Typhimurium in mice. Journal of Microbiology, Immunology and Infection, 56(2), 324336.

Pereira-Dias, J., Taneja, N., Mahindroo, J., Maheshwari, G., Patel, P. J., Thu, T. N. H., ... & Mylona,

E. (2023). The genomic characterization of Salmonella Paratyphi A from an outbreak of enteric fever

in Vadodara, India. Microbial Genomics, 9(1), 000914.

Sajib, M. S., Tanmoy, A. M., Hooda, Y., Rahman, H., Munira, S. J., Sarkar, A., ... & Saha, S. (2023).

-year trends indicate low rates antimicrobial resistance in Salmonella Paratyphi A. medRxiv,

Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., ... & Suar, M.

(2022). Immunoinformatic approach employing modeling and simulation to design a novel vaccine

construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella

serovars. Journal of Biomolecular Structure and Dynamics, 40(22), 11809-11821.

Umair, M., & Siddiqui, S. A. (2020). Antibiotic susceptibility patterns of Salmonella typhi and

Salmonella paratyphi in a tertiary care hospital in Islamabad. Cureus, 12(9).

Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella

pneumoniae: challenges for treatment, prevention and infection control. Expert review of anti-infective

therapy, 16(10), 749-761.

Tang, M., Kong, X., Hao, J., & Liu, J. (2020). Epidemiological characteristics and formation

mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Frontiers in microbiology,

, 581543.

Lin, Z. W., Zheng, J. X., Bai, B., Xu, G. J., Lin, F. J., Chen, Z., ... & Deng, Q. W. (2020).

Characteristics of hypervirulent Klebsiella pneumoniae: does low expression of rmpA contribute to

the absence of hypervirulence?. Frontiers in microbiology, 11, 436.

van Harten, R. M., Willems, R. J., Martin, N. I., & Hendrickx, A. P. (2017). Multidrugresistant

enterococcal infections: new compounds, novel antimicrobial therapies?. Trends in microbiology,

(6), 467-479.

Adesida, S. A., Ezenta, C. C., Adagbada, A. O., Aladesokan, A. A., & Coker, A. O. (2017).

Carriage of multidrug resistant Enterococcus faecium and Enterococcus faecalis among apparently

healthy humans. African journal of infectious diseases, 11(2), 83-89.

Bhatt, P., Patel, A., Sahni, A. K., Praharaj, A. K., Grover, N., Chaudhari, C. N., ... & Kulkarni, M.

(2015). Emergence of multidrug resistant enterococci at a tertiary care centre. medical journal armed

forces india, 71(2), 139-144.

Freitas, A. R., Pereira, A. P., Novais, C., & Peixe, L. (2021). Multidrug-resistant high-risk

Enterococcus faecium clones: can we really define them?. International journal of antimicrobial agents, 57(1), 106227.

Downloads

Published

2024-04-30

How to Cite

Bisma Nadeem, H., Khawar, H., Jabeen, S., Salah ud Din, M., Zahid sarfraz, M., Abbas, S., & Shafique Awan, H. (2024). Evaluation of Anti-Oxidant Potential and Novel Synergism Effect of Citrullus colocynthis against MDR pathogenic Strains. History of Medicine, 10(2), 153-176. https://historymedjournal.com/HOM/index.php/medicine/article/view/759