Evaluation of Anti-Oxidant Potential and Novel Synergism Effect of Citrullus colocynthis against MDR pathogenic Strains
Abstract
Citrullus colocynthis belong to family Cucurbitaceae is a medicinal plant traditionally used for the treatment of various diseases [1][2] including diabetes, bacterial infections, constipation and many other diseases. Various parts of plant individually produced anti-microbial and anti-oxidant potential. This is the first study reporting 1. The Novel synergism effect of Citrullus colocynthis, Fruit, Seed and root extract against MDR pathogenic strains in the least concentration of various organic solvents extracted compounds (first study reporting anti-microbial activity of Butanol extracted compounds) 2. Inhibitory concentration (IC50) of these compounds against MDR 3. Novel Synergism of C. colocynthis fruit, seed and root showing anti-oxidant potential. According to findings, Citrullus colocynthis can be used as medicinal plant as its various compounds isolated through organic solvents showed antimicrobial activity against MDR-pathogens. Maximum activity against MDR pathogens of Pseudomonas Aeurignosa, Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Stenotrophomonas maltophilia, Salmonella typhi, Salmonella paratyphi, Acinetobacter baumanni and Enterococcus faecalis was shown by Butanol extract followed by Chloroform, Acetone, Ethanol, Hexane and DMSO extract. The plant also showed 92% anti-oxidant potential in the least concentration of 93µg/mL.
Downloads
References
Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal
plants. Journal of ethnopharmacology, 77(2-3), 151-157.
Abd El-Ghani, M. M. (2016). Traditional medicinal plants of Nigeria: an overview. Agriculture and
Biology Journal of North America, 7(5), 220-247.
MALEK, T., Chaudhari, K., & Maitrey, B. (2022). A REVIEW ON REPORTED
ETHANOMEDICINAL PLANTS OF ARAVALLI DISTRICT, GUJARAT, INDIA. VIDYA-A
JOURNAL OF GUJARAT UNIVERSITY, 1(2), 76-79.
Hao, D. C., & Xiao, P. G. (2015). Genomics and evolution in traditional medicinal plants: road to a
healthier life. Evolutionary Bioinformatics, 11, EBO-S31326.
Alqahtani, A. S., Ullah, R., & Shahat, A. A. (2022). Bioactive constituents and toxicological evaluation
of selected antidiabetic medicinal plants of Saudi Arabia. Evidence-Based Complementary and
Alternative Medicine, 2022.
Anup, K., Mohan, K., Suraj, S., Sandip, F., Bhushan, F., & Prashant, W. (2010). Antimicrobial activity
of some important medicinal plants of India against some plant and human pathogens. Research
Journal of Pharmacy and Technology, 3(3), 924-926.
Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International journal of herbal
medicine, 4(4), 59-64.
Dar, R. A., Shahnawaz, M., & Qazi, P. H. (2017). General overview of medicinal plants: A review. The
journal of phytopharmacology, 6(6), 349-351.
Dar, R. A., Shahnawaz, M., & Qazi, P. H. (2017). General overview of medicinal plants: A review. The
journal of phytopharmacology, 6(6), 349-351.
Mustapa, A. N., Martin, Á., Mato, R. B., & Cocero, M. J. (2015). Extraction of phytocompounds from
the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical
carbon dioxide extraction. Industrial Crops and Products, 74, 83-94.
Maatooq, G. T., El-Sharkawy, S. H., Afifi, M. S., & Rosazza, J. P. (1997).
Cphydroxybenzoylglycoflavones from Citrullus colocynthis. Phytochemistry, 44(1), 187-190.
Levi, A., Thomas, C. E., Keinath, A. P., & Wehner, T. C. (2001). Genetic diversity among watermelon
(Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution, 48,
-566.
Kumar, S., Kumar, D., Saroha, K., Singh, N., & Vashishta, B. (2008). Antioxidant and free radical
scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta
Pharmaceutica, 58(2), 215-220.
Bhasin, A., Singh, S., & Garg, R. (2020). Nutritional and medical importance of Citrullus colocynthisA review. Plant Archives, 20(2), 3400-3406.
Marzouk, B., Marzouk, Z., Décor, R., Edziri, H., Haloui, E., Fenina, N., & Aouni, M. (2009).
Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine.
Journal of ethnopharmacology, 125(2), 344-349.
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and
therapeutics, 40(4), 277.
Barghamdi, B., Ghorat, F., Asadollahi, K., Sayehmiri, K., Peyghambari, R., & Abangah, G. (2016).
Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study.
Journal of pharmacy & bioallied sciences, 8(2), 130.
Rabizadeh, F., Mirian, M. S., Doosti, R., Kiani-Anbouhi, R., & Eftekhari, E. (2022). Phytochemical
Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional
Persian Medicine. Evidence-Based Complementary and Alternative Medicine, 2022.
Achilonu, M., Shale, K., Arthur, G., Naidoo, K., & Mbatha, M. (2018). Phytochemical benefits of
agroresidues as alternative nutritive dietary resource for pig and poultry farming. Journal of Chemistry,
, 1-15.
Mariod, A. A., & Jarret, R. L. (2022). Antioxidant, antimicrobial, and antidiabetic activities of Citrullus
colocynthis seed oil. In Multiple Biological Activities of Unconventional Seed Oils (pp. 139-146).
Academic Press.
Eidi, S., Azadi, H. G., Rahbar, N., & Mehmannavaz, H. R. (2015). Evaluation of antifungal activity of
hydroalcoholic extracts of Citrullus colocynthis fruit. Journal of herbal medicine, 5(1), 36-40.
da Silva, J. A. T., & Hussain, A. I. (2017). Citrullus colocynthis (L.) Schrad.(colocynth):
Biotechnological perspectives. Emirates Journal of Food and Agriculture, 83-90.
Dabe, N. E., & Kefale, A. T. (2017). Antidiabetic effects of Artemisia species: a systematic review.
Ancient science of life, 36(4), 175.
Finch, C. E. (2005). Developmental origins of aging in brain and blood vessels: an overview.
Neurobiology of aging, 26(3), 281-291.
Duke, J. A. (2008). Duke's handbook of medicinal plants of Latin America. CRC press.
Alhawiti, N. M. (2018). Antiplatelets and profibrinolytic activity of Citrullus colocynthis in control
and high-fat diet-induced obese rats: mechanisms of action. Archives of physiology and biochemistry,
(2), 156-166.
Ballotin, V. R., Bigarella, L. G., de Mello Brandão, A. B., Balbinot, R. A., Balbinot, S. S., & Soldera,
J. (2021). Herb-induced liver injury: Systematic review and meta-analysis. World Journal of Clinical
Cases, 9(20), 5490.
Sanadgol, N., Najafi, S., Ghasemi, L. V., Motalleb, G., & Estakhr, J. (2011). A study of the inhibitory
effects of Citrullus colocynthis (CCT) using hydro-alcoholic extract on the expression of cytokines:
TNF-α and IL-6 in high fat diet-fed mice towards a cure for diabetes mellitus. Journal of
pharmacognosy and phytotherapy, 3(6), 81-88.
Pashmforosh, M., Rajabi Vardanjani, H., Rajabi Vardanjani, H., Pashmforosh, M., & Khodayar, M. J.
(2018). Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in
rats. Medicina, 54(4), 51.
Tannin-Spitz, T., Grossman, S., Dovrat, S., Gottlieb, H. E., & Bergman, M. (2007). Growth inhibitory
activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.
Biochemical pharmacology, 73(1), 56-67.
Rizvi, T. S., Khan, A. L., Ali, L., Al-Mawali, N., Mabood, F., Hussain, J., ... & Al-Harrasi, A. (2018).
In vitro oxidative stress regulatory potential of Citrullus colocynthis and Tephrosia apollinea. Acta
Pharmaceutica, 68(2), 235-242.
Gupta, S. C., Tripathi, T., Paswan, S. K., Agarwal, A. G., Rao, C. V., & Sidhu, O. P. (2018).
Phytochemical investigation, antioxidant and wound healing activities of Citrullus colocynthis (bitter
apple). Asian Pacific Journal of Tropical Biomedicine, 8(8), 418.
Mariod, A. A., & Jarret, R. L. (2022). Antioxidant, antimicrobial, and antidiabetic activities of Citrullus
colocynthis seed oil. In Multiple Biological Activities of Unconventional Seed Oils (pp.
-146). Academic Press.
Afzal, M., Khan, A. S., Zeshan, B., Riaz, M., Ejaz, U., Saleem, A., ... & Ahmed, N. (2023).
Characterization of bioactive compounds and novel proteins derived from promising source citrullus
colocynthis along with in-vitro and in-vivo activities. Molecules, 28(4), 1743.
Javadzadeh, H. R., Davoudi, A., Davoudi, F., Valizadegan, G., Goodarzi, H., Mahmoodi, S., ... &
Faraji, M. (2013). Citrullus colocynthis as the Cause of Acute Rectorrhagia. Case reports in emergency
medicine, 2013.
Al-Nablsi, S., El-Keblawy, A., Ali, M. A., Mosa, K. A., Hamoda, A. M., Shanableh, A., ... & Soliman,
S. S. (2022). Phenolic contents and antioxidant activity of Citrullus Colocynthis fruits, growing in the
hot arid desert of the UAE, influenced by the fruit parts, accessions, and seasons of fruit collection.
Antioxidants, 11(4), 656.
Rizvi, T. S., Mabood, F., Ali, L., Al‐Broumi, M., Al Rabani, H. K., Hussain, J., ... & Al‐Harrasi, A.
(2018). Application of NIR spectroscopy coupled with PLS regression for quantification of total
polyphenol contents from the fruit and aerial parts of Citrullus colocynthis. Phytochemical Analysis,
(1), 16-22.
Lemos, M. F., Lemos, M. F., Pacheco, H. P., Guimarães, A. C., Fronza, M., Endringer, D. C., & Scherer,
R. (2017). Seasonal variation affects the composition and antibacterial and antioxidant activities of
Thymus vulgaris. Industrial Crops and Products, 95, 543-548.
Birgani, G. A., Ahangarpour, A., Khorsandi, L., & Moghaddam, H. F. (2018). Anti-diabetic effect of
betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Brazilian Journal
of Pharmaceutical Sciences, 54.
Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal
plants having insulin mimetic property. Asian Pacific journal of tropical biomedicine, 2(4), 320-330.
Chauhan, A., Semwal, D. K., Mishra, S. P., & Semwal, R. B. (2015). Ayurvedic research and
methodology: Present status and future strategies. Ayu, 36(4), 364.
Shaikh, S. I., Nagarekha, D., Hegade, G., & Marutheesh, M. (2016). Postoperative nausea and
vomiting: A simple yet complex problem. Anesthesia, essays and researches, 10(3), 388.
Koche, D., Shirsat, R., & Kawale, M. A. H. E. S. H. (2016). An overerview of major classes of
phytochemicals: their types and role in disease prevention. Hislopia Journal, 9(1/2), 0976-2124.
Mohiuddin, A. K. (2019). A brief review of traditional plants as sources of pharmacological interests.
Open Journal of Plant Science, 4(1), 1-8.
Kafshgari, H. S., Yazdanian, M., Ranjbar, R., Tahmasebi, E., Mirsaeed, S. R. G., Tebyanian, H., ... &
Goli, H. R. (2019). The effect of Citrullus colocynthis extracts on Streptococcus mutans, Candida
albicans, normal gingival fibroblast and breast cancer cells. Journal of Biological ResearchBollettino
della Società Italiana di Biologia Sperimentale, 92(1).
Abdulridha, M. K., Al-Marzoqi, A. H., & Ghasemian, A. (2020). The anticancer efficiency of Citrullus
colocynthis toward the colorectal cancer therapy. Journal of Gastrointestinal Cancer, 51, 439-444
Lahfa, F. B., Azzi, R., Mezouar, D., & Djaziri, R. (2017). Hypoglycemic effect of Citrullus colocynthis
extracts. Phytothérapie, 15(2), 50-56.
Al‐Hwaiti, M. S., Alsbou, E. M., Abu Sheikha, G., Bakchiche, B., Pham, T. H., Thomas, R. H., &
Bardaweel, S. K. (2021). Evaluation of the anticancer activity and fatty acids composition of
“Handal”(Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Science &
Nutrition, 9(1), 282-289.
Rajizadeh, M. A., Aminizadeh, A. H., Esmaeilpour, K., Bejeshk, M. A., Sadeghi, A., & Salimi, F.
(2023). Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like
behaviors in STZ-induced diabetic rats. International Journal of Neuroscience, 133(4), 343-355
Rahbar, A. R., & Nabipour, I. (2010). The hypolipidemic effect of Citrullus colocynthis on patients
with hyperlipidemia. Pakistan journal of biological sciences: PJBS, 13(24), 1202-1207.
Daradka, H., Almasad, M. M., WSh, Q., El-Banna, N. M., & Samara, O. H. (2007). Hypolipidaemic
effects of Citrullus colocynthis L. in rabbits. Pakistan journal of biological sciences: PJBS, 10(16),
-2771.
Jeon, J. H., & Lee, H. S. (2014). Biofunctional constituent isolated from Citrullus colocynthis fruits
and structure–activity relationships of its analogues show acaricidal and insecticidal efficacy. Journal
of agricultural and food chemistry, 62(34), 8663-8667.
Rahuman, A. A., Venkatesan, P., & Gopalakrishnan, G. (2008). Mosquito larvicidal activity of oleic
and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitology research, 103, 1383-
Chawech, R., Njeh, F., Hamed, N., Damak, M., Ayadi, A., Hammami, H., & Mezghani‐Jarraya, R.
(2017). A study of the molluscicidal and larvicidal activities of Citrullus colocynthis (L.) leaf extract
and its main cucurbitacins against the mollusc Galba truncatula, intermediate host of Fasciola hepatica.
Pest management science, 73(7), 1473-1477.
Meybodi, M. S. K. (2020). A review on pharmacological activities of Citrullus colocynthis (L.) Schrad.
Asian J. Res. Rep. Endocrinol, 25, 25-34.
da Silva, J. A. T., & Hussain, A. I. (2017). Citrullus colocynthis (L.) Schrad.(colocynth):
Biotechnological perspectives. Emirates Journal of Food and Agriculture, 83-90.
Amamou, F., Bouafia, M., Chabane-Sari, D., Meziane, R. K., & Nani, A. (2011). Citrullus colocynthis:
a desert plant native in Algeria, effects of fixed oil on blood homeostasis in Wistar rat. Journal of
Natural Product and Plant Resources, 1, 1-7.
Savithramma, N., Sulochana, C., & Rao, K. N. (2007). Ethnobotanical survey of plants used to treat
asthma in Andhra Pradesh, India. Journal of Ethnopharmacology, 113(1), 54-61.
Bouldin, A. S., Smith, M. C., Garner, D. D., Szeinbach, S. L., Frate, D. A., & Croom, E. M. (1999).
Pharmacy and herbal medicine in the US. Social science & medicine, 49(2), 279-289.
Lavie, D., Willner, D., & Merenlender, Z. (1964). Constituents of Citrullus colocynthis (L.) Schrad.
Phytochemistry, 3(1), 51-56.
Meybodi, M. S. K. (2020). A review on pharmacological activities of Citrullus colocynthis (L.) Schrad.
Asian J. Res. Rep. Endocrinol, 25, 25-34.
Rajizadeh, M. A., Aminizadeh, A. H., Esmaeilpour, K., Bejeshk, M. A., Sadeghi, A., & Salimi, F.
(2023). Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like
behaviors in STZ-induced diabetic rats. International Journal of Neuroscience, 133(4), 343-355.
Mohiuddin, A. K. (2019). A brief review of traditional plants as sources of pharmacological interests.
Open Journal of Plant Science, 4(1), 1-8.
Roy, R. K., Thakur, M., & Dixit, V. K. (2007). Effect of citrullus colocynthis. On hair growth in albino
rats. Pharmaceutical biology, 45(10), 739-744.
Chaturvedi, M., Mali, P. C., & Ansari, A. S. (2003). Induction of reversible antifertility with a crude
ethanol extract of Citrullus colocynthis Schrad fruit in male rats. Pharmacology, 68(1), 38-48.
Kumar, D., Kumar, A., & Prakash, O. (2012). Potential antifertility agents from plants: A
comprehensive review. Journal of Ethnopharmacology, 140(1), 1-32.
Sharma, A., Sharma, P., Chaturvedi, M., & Joshi, S. C. (2014). Effect of Citrullus colocynthis on
function of cauda epididymis and accessory reproductive organs of male rats. World Journal of
Pharmaceutical Research, 3(2), 2406-2419.
Vivas, R., Barbosa, A. A. T., Dolabela, S. S., & Jain, S. (2019). Multidrug-resistant bacteria and
alternative methods to control them: an overview. Microbial Drug Resistance, 25(6), 890-908.
Medina, E., & Pieper, D. H. (2016). Tackling threats and future problems of multidrug-resistant
bacteria. How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives,
-33.
Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria:
a study. Journal of pathogens, 2016.
Sharma, A. (2011). Antimicrobial resistance: no action today, no cure tomorrow. Indian Journal of
Medical Microbiology, 29(2), 91.
Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797), 762-767.
Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas
aeruginosa high-risk clones. Drug Resistance Updates, 21, 41-59.
Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas
aeruginosa infections: an update. Drugs, 81(18), 2117-2131.
Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in microbiology, 2, 65.
Breidenstein, E. B., de la Fuente-Núñez, C., & Hancock, R. E. (2011). Pseudomonas aeruginosa: all
roads lead to resistance. Trends in microbiology, 19(8), 419-426.
Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas
aeruginosa high-risk clones. Drug Resistance Updates, 21, 41-59.
Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., ... & Grau, S. (2019).
Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas
aeruginosa infections. Clinical microbiology reviews, 32(4), e00031-19.
Hua, X., Liu, L., Fang, Y., Shi, Q., Li, X., Chen, Q., ... & Yu, Y. (2017). Colistin resistance in
Acinetobacter baumannii MDR-ZJ06 revealed by a multiomics approach. Frontiers in cellular and
infection microbiology, 7, 45.
Ni, W., Han, Y., Zhao, J., Wei, C., Cui, J., Wang, R., & Liu, Y. (2016). Tigecycline treatment experience
against multidrug-resistant Acinetobacter baumannii infections: a systematic review and metaanalysis. International journal of antimicrobial agents, 47(2), 107-116.
Adegoke, A. A., Stenström, T. A., & Okoh, A. I. (2017). Stenotrophomonas maltophilia as an emerging
ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Frontiers in microbiology, 8,
Chang, Y. T., Lin, C. Y., Chen, Y. H., & Hsueh, P. R. (2015). Update on infections caused by
Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic
options. Frontiers in microbiology, 6, 893.
Nguyen, T. H. T., Nguyen, N. A. T., Nguyen, H. D., Nguyen, T. T. H., Le, M. H., Pham, M. Q., ... &
Pham, H. N. (2023). Plant Secondary Metabolites on Efflux-Mediated Antibiotic Resistant
Stenotrophomonas Maltophilia: Potential of Herbal-Derived Efflux Pump
Inhibitors. Antibiotics, 12(2), 421.
Dadashi, M., Hajikhani, B., Nazarinejad, N., Nourisepehr, N., Yazdani, S., Hashemi, A., ... & Sameni,
F. (2023). Global prevalence and distribution of antibiotic resistance among clinical isolates of
Stenotrophomonas maltophilia: a systematic review and meta-analysis. Journal of Global
Antimicrobial Resistance.
Kumar, G., & Tudu, A. K. (2023). Tackling multidrug-resistant Staphylococcus aureus by natural
products and their analogues acting as NorA efflux pump inhibitors. Bioorganic & Medicinal
Chemistry, 117187.
Kime, L., Waring, T., Mohamad, M., Mann, B. F., & O’Neill, A. J. (2023). Resistance to antibacterial
antifolates in multidrug-resistant Staphylococcus aureus: prevalence estimates and genetic basis.
Journal of Antimicrobial Chemotherapy, 78(5), 1201-1210.
Chand, U., Priyambada, P., & Kushawaha, P. K. (2023). Staphylococcus aureus vaccine strategy:
promise and challenges. Microbiological Research, 127362.
Al-Trad, E. A. I., Che Hamzah, A. M., Puah, S. M., Chua, K. H., Hanifah, M. Z., Ayub, Q., ... & Yeo,
C. C. (2023). Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant MethicillinResistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens, 12(3),
Hussain, T., Shami, A., Rafiq, N., Khan, S., Kabir, M., Khan, N. U., ... & Usman, T. (2023).
Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin-and
Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics, 12(4), 673.
Aljasir, S. F., & D'Amico, D. J. (2023). Anti-infective properties of the protective culture Hafnia alvei
B16 in food and intestinal models against multi-drug resistant Salmonella. Food Microbiology, 110,
Mina, S. A., Hasan, M. Z., Hossain, A. Z., Barua, A., Mirjada, M. R., & Chowdhury, A. M. A. (2023).
The Prevalence of Multi-Drug Resistant Salmonella typhi Isolated From Blood Sample. Microbiology
Insights, 16, 11786361221150760.
Chou, S. H., Wan, T. W., Shiau, C. W., Chen, L. H., Lin, H. C., & Chiu, H. C. (2023). Repurposing the
Tyrosine Kinase Inhibitor Nilotinib for Use Against Intracellular Multidrug-Resistant Salmonella
Typhimurium. Journal of Microbiology, Immunology and Infection.
Igbinosa, I. H., Amolo, C. N., Beshiru, A., Akinnibosun, O., Ogofure, A. G., El-Ashker, M., ... &
Igbinosa, E. O. (2023). Identification and characterization of MDR virulent Salmonella spp isolated
from smallholder poultry production environment in Edo and Delta States, Nigeria. Plos one, 18(2),
e0281329.
García, P., Moscoso, M., Fuentes-Valverde, V., Rodicio, M. R., Herrera-León, S., & Bou, G. (2023). A
highly-safe live auxotrophic vaccine protecting against disease caused by non-typhoidal Salmonella
Typhimurium in mice. Journal of Microbiology, Immunology and Infection, 56(2), 324336.
Pereira-Dias, J., Taneja, N., Mahindroo, J., Maheshwari, G., Patel, P. J., Thu, T. N. H., ... & Mylona,
E. (2023). The genomic characterization of Salmonella Paratyphi A from an outbreak of enteric fever
in Vadodara, India. Microbial Genomics, 9(1), 000914.
Sajib, M. S., Tanmoy, A. M., Hooda, Y., Rahman, H., Munira, S. J., Sarkar, A., ... & Saha, S. (2023).
-year trends indicate low rates antimicrobial resistance in Salmonella Paratyphi A. medRxiv,
Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., ... & Suar, M.
(2022). Immunoinformatic approach employing modeling and simulation to design a novel vaccine
construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella
serovars. Journal of Biomolecular Structure and Dynamics, 40(22), 11809-11821.
Umair, M., & Siddiqui, S. A. (2020). Antibiotic susceptibility patterns of Salmonella typhi and
Salmonella paratyphi in a tertiary care hospital in Islamabad. Cureus, 12(9).
Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella
pneumoniae: challenges for treatment, prevention and infection control. Expert review of anti-infective
therapy, 16(10), 749-761.
Tang, M., Kong, X., Hao, J., & Liu, J. (2020). Epidemiological characteristics and formation
mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Frontiers in microbiology,
, 581543.
Lin, Z. W., Zheng, J. X., Bai, B., Xu, G. J., Lin, F. J., Chen, Z., ... & Deng, Q. W. (2020).
Characteristics of hypervirulent Klebsiella pneumoniae: does low expression of rmpA contribute to
the absence of hypervirulence?. Frontiers in microbiology, 11, 436.
van Harten, R. M., Willems, R. J., Martin, N. I., & Hendrickx, A. P. (2017). Multidrugresistant
enterococcal infections: new compounds, novel antimicrobial therapies?. Trends in microbiology,
(6), 467-479.
Adesida, S. A., Ezenta, C. C., Adagbada, A. O., Aladesokan, A. A., & Coker, A. O. (2017).
Carriage of multidrug resistant Enterococcus faecium and Enterococcus faecalis among apparently
healthy humans. African journal of infectious diseases, 11(2), 83-89.
Bhatt, P., Patel, A., Sahni, A. K., Praharaj, A. K., Grover, N., Chaudhari, C. N., ... & Kulkarni, M.
(2015). Emergence of multidrug resistant enterococci at a tertiary care centre. medical journal armed
forces india, 71(2), 139-144.
Freitas, A. R., Pereira, A. P., Novais, C., & Peixe, L. (2021). Multidrug-resistant high-risk
Enterococcus faecium clones: can we really define them?. International journal of antimicrobial agents, 57(1), 106227.
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.