STRUCTURAL DOCKING OF ANTIBIOTIC ENTECAVIR FOR THE TREATMENT OF PEDIATRIC ACUTE LIVER FAILURE BY USING DISCOVERY STUDIO

Authors

  • Ali Raza Nawab Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore Author
  • Aima Arooj Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore Author
  • Sana Ghaffar Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore Author
  • Mian Zahid Sarfraz Department of Pathology, Allama Iqbal Medical College, Lahore. Author
  • Syeda Warda Bukhari Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore Author

DOI:

https://doi.org/10.48047/HM.V11.I2.2025.21-37

Abstract

This research specifically focused on children who have experienced acute liver failure in the field of pediatric liver transplantation (LT). Acute liver failure in children is a complex, life-threatening illness that can either go away on its own or result in death. LT is a procedure that can save lives. Standby list mortality has decreased, as has overall prognosis, graft survival, and immunosuppression survival due to the development of technical variant grafts and subsequent immunosuppressive adjustments. Acute liver failure (ALF) is a syndrome with a variety of underlying causes, such as renal, cardiac, pulmonary, and hepatic encephalopathy, which causes a rapid loss of hepatic function. The pathophysiology of ALF, including hepatocyte necrosis, extrahepatic consequences, and hepatocyte regeneration, is significantly influenced by hepatic and circulating inflammatory cytokines. Unchecked cytokine overproduction is dangerous to the host and can have negative effects. Hepatocyte-specific injury is caused by the activation of the innate and adaptive immune systems, and T regulatory cell activity reduces this damage. The integrated stress response (ISR; e.g., PERK), p53, and HNF4 are examples of apoptotic and regenerative pathways that must be activated for the native liver to recover. Recurrent ALF is brought on by loss-offunction mutations in these pathways in response to non-hepatotropic viruses. 

Downloads

Download data is not yet available.

References

Akos Végvári, Thomas Fehniger, & Melinda Rezeli. (2012). MEDICINE SELE C TE D PR E S E NTAT I O N S FROM TH E ON CLINICAL AND TR ANSL ATIONAL 2011 SINO-AME R I C AN SYMPOSIUM.

Bechmann, L. P., Marquitan, G., Jochum, C., Saner, F., Gerken, G., & Canbay, A. (2008). Apoptosis versus necrosis rate as a predictor in acute liver failure following acetaminophen intoxication compared with acute‐on‐chronic liver failure. Liver International, 28(5), 713– 716. https://doi.org/10.1111/j.1478-3231.2007.01566.x

Cochran, J. B., & Losek, J. D. (2007). Acute Liver Failure in Children. Pediatric Emergency Care, 23(2), 129–135. https://doi.org/10.1097/PEC.0b013e3180308f4b

Crispe, I. N. (2009a). The Liver as a Lymphoid Organ. Annual Review of Immunology, 27(1), 147–163. https://doi.org/10.1146/annurev.immunol.021908.132629

Crispe, I. N. (2009b). The Liver as a Lymphoid Organ. Annual Review of Immunology, 27(1), 147–163. https://doi.org/10.1146/annurev.immunol.021908.132629

Doç brahim GÖREN OMÜ Gastroenteroloji, Y. (n.d.). Akut Karaciğer Yetersizliği.

Hagiwara, S., Otsuka, T., Yamazaki, Y., Kosone, T., Sohara, N., Ichikawa, T., Sato, K., Kakizaki, S., Takagi, H., & Mori, M. (2008a). Overexpression of NK2 promotes liver fibrosis in carbon tetrachloride‐induced chronic liver injury. Liver International, 28(1), 126–131. https://doi.org/10.1111/j.1478-3231.2007.01616.x

Hagiwara, S., Otsuka, T., Yamazaki, Y., Kosone, T., Sohara, N., Ichikawa, T., Sato, K., Kakizaki, S., Takagi, H., & Mori, M. (2008b). Overexpression of NK2 promotes liver fibrosis in carbon tetrachloride‐induced chronic liver injury. Liver International, 28(1), 126–131. https://doi.org/10.1111/j.1478-3231.2007.01616.x

Hong, F., Jaruga, B., Kim, W. H., Radaeva, S., El-Assal, O. N., Tian, Z., Nguyen, V.-A., & Gao, B. (2002). Opposing roles of STAT1 and STAT3 in T cell–mediated hepatitis: regulation by SOCS. Journal of Clinical Investigation, 110(10), 1503–1513. https://doi.org/10.1172/JCI15841

Jain, V., & Dhawan, A. (2016). Prognostic modeling in pediatric acute liver failure. Liver Transplantation, 22(10), 1418–1430. https://doi.org/10.1002/lt.24501

Kotoh, K. (2010). A new treatment strategy for acute liver failure. World Journal of Hepatology, 2(11), 395. https://doi.org/10.4254/wjh.v2.i11.395

Liver Failure and Artificial Liver Group, C. S. of I. D. C. M. A., & Severe Liver Diseases and Artificial Liver Group, C. S. of H. C. M. A. (2006). [Diagnostic and treatment guidelines for liver failure]. Zhonghua Gan Zang Bing Za Zhi = Zhonghua Ganzangbing Zazhi = Chinese Journal of Hepatology, 14(9), 643–646.

Lu, J.-W., Wang, H., Yan-Li, J., Zhang, C., Ning, H., Li, X.-Y., Zhang, H., Duan, Z.-H., Zhao, L., Wei, W., & Xu, D.-X. (2008). Differential effects of pyrrolidine dithiocarbamate on TNF-α- mediated liver injury in two different models of fulminant hepatitis. Journal of Hepatology, 48(3), 442–452. https://doi.org/10.1016/j.jhep.2007.10.014

Otsuka, T., Takagi, H., Horiguchi, N., Toyoda, M., Sato, K., Takayama, H., & Mori, M. (2002). CCl 4 ‐induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK2 overexpression. FEBS Letters, 532(3), 391–395. https://doi.org/10.1016/S0014-5793(02)03714-6

Paiva, V. de A., Gomes, I. de S., Monteiro, C. R., Mendonça, M. V., Martins, P. M., Santana, C. A., Gonçalves-Almeida, V., Izidoro, S. C., Melo-Minardi, R. C. de, & Silveira, S. de A. (2022). Protein structural bioinformatics: An overview. Computers in Biology and Medicine, 147, 105695. https://doi.org/10.1016/j.compbiomed.2022.105695

Palomares-Reyes, C., Silva-Caso, W., del Valle, L. J., Aguilar-Luis, M. A., Weilg, C., Martins- Luna, J., Viñas-Ospino, A., Stimmler, L., Mallqui Espinoza, N., Aquino Ortega, R., Espinoza Espíritu, W., Misaico, E., & del Valle-Mendoza, J. (2019). Dengue diagnosis in an endemic area of Peru: Clinical characteristics and positive frequencies by RT-PCR and serology for NS1, IgM, and IgG. International Journal of Infectious Diseases, 81, 31–37. https://doi.org/10.1016/j.ijid.2019.01.022

Squires, J. E., McKiernan, P., & Squires, R. H. (2018). Acute Liver Failure. Clinics in Liver Disease, 22(4), 773–805. https://doi.org/10.1016/j.cld.2018.06.009

Squires, R. H., Shneider, B. L., Bucuvalas, J., Alonso, E., Sokol, R. J., Narkewicz, M. R., Dhawan, A., Rosenthal, P., Rodriguez-Baez, N., Murray, K. F., Horslen, S., Martin, M. G., Lopez, M. J., Soriano, H., McGuire, B. M., Jonas, M. M., Yazigi, N., Shepherd, R. W., Schwarz, K., … Hynan, L. S. (2006). Acute liver failure in children: The first 348 patients in the pediatric acute liver failure study group. The Journal of Pediatrics, 148(5), 652- 658.e2. https://doi.org/10.1016/j.jpeds.2005.12.051

V Racanelli, B. R. (2006). The liver as an immunological organ. HEPATOLOGY, Vol. 43, No. 2, Suppl. 1, 2006, 43, S54–S62.

Yucel Yankol, 1Mustafa Ertugrul, 2Turan Kanmaz, 1Nesimi Mecit, 1Ilhan Ocak, 3Ozlem Durmaz, 2Koray Acarli, 1Munci Kalayoglu1. (2016). Management of Pediatric Acute Liver Failure in a Region With Insufficient Deceased Donor Support: A Single-Center Experience. Experimental and Clinical Transplantation, 14(5).

Shen, Y., Xu, W., Chen, Y., Wen, S., Chen, Q., Liu, S., . . . Ju, B. J. S. R. (2024). Early prediction of acute-on-chronic liver failure development in patients with diverse chronic liver diseases. 14(1), 28245.

Wang, X., & Ning, Q. J. E. j. (2014). Immune mediated liver failure. 13, 1131.

Downloads

Published

2025-09-15

How to Cite

Nawab, A. R. ., Arooj, A. ., Ghaffar, S. ., Sarfraz, M. Z. ., & Bukhari, S. W. . (2025). STRUCTURAL DOCKING OF ANTIBIOTIC ENTECAVIR FOR THE TREATMENT OF PEDIATRIC ACUTE LIVER FAILURE BY USING DISCOVERY STUDIO. History of Medicine, 11(2), 21-37. https://doi.org/10.48047/HM.V11.I2.2025.21-37